tobiasc's picture
Initial commit
ad16788
raw
history blame
1.38 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2019 Shigeki Karita
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Parameter initialization."""
import torch
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm
def initialize(model, init_type="pytorch"):
"""Initialize Transformer module.
:param torch.nn.Module model: transformer instance
:param str init_type: initialization type
"""
if init_type == "pytorch":
return
# weight init
for p in model.parameters():
if p.dim() > 1:
if init_type == "xavier_uniform":
torch.nn.init.xavier_uniform_(p.data)
elif init_type == "xavier_normal":
torch.nn.init.xavier_normal_(p.data)
elif init_type == "kaiming_uniform":
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
elif init_type == "kaiming_normal":
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
else:
raise ValueError("Unknown initialization: " + init_type)
# bias init
for p in model.parameters():
if p.dim() == 1:
p.data.zero_()
# reset some modules with default init
for m in model.modules():
if isinstance(m, (torch.nn.Embedding, LayerNorm)):
m.reset_parameters()