|
|
|
|
|
|
|
"""Encoder definition.""" |
|
from typing import Optional |
|
from typing import Tuple |
|
|
|
import torch |
|
from typeguard import check_argument_types |
|
|
|
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask |
|
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention |
|
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding |
|
from espnet.nets.pytorch_backend.transformer.contextual_block_encoder_layer import ( |
|
ContextualBlockEncoderLayer, |
|
) |
|
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm |
|
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import Conv1dLinear |
|
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import MultiLayeredConv1d |
|
from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import ( |
|
PositionwiseFeedForward, |
|
) |
|
from espnet.nets.pytorch_backend.transformer.repeat import repeat |
|
from espnet.nets.pytorch_backend.transformer.subsampling_without_posenc import ( |
|
Conv2dSubsamplingWOPosEnc, |
|
) |
|
from espnet2.asr.encoder.abs_encoder import AbsEncoder |
|
import math |
|
|
|
|
|
class ContextualBlockTransformerEncoder(AbsEncoder): |
|
"""Contextual Block Transformer encoder module. |
|
|
|
Details in Tsunoo et al. "Transformer ASR with contextual block processing" |
|
(https://arxiv.org/abs/1910.07204) |
|
|
|
Args: |
|
input_size: input dim |
|
output_size: dimension of attention |
|
attention_heads: the number of heads of multi head attention |
|
linear_units: the number of units of position-wise feed forward |
|
num_blocks: the number of decoder blocks |
|
dropout_rate: dropout rate |
|
attention_dropout_rate: dropout rate in attention |
|
positional_dropout_rate: dropout rate after adding positional encoding |
|
input_layer: input layer type |
|
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding |
|
normalize_before: whether to use layer_norm before the first block |
|
concat_after: whether to concat attention layer's input and output |
|
if True, additional linear will be applied. |
|
i.e. x -> x + linear(concat(x, att(x))) |
|
if False, no additional linear will be applied. |
|
i.e. x -> x + att(x) |
|
positionwise_layer_type: linear of conv1d |
|
positionwise_conv_kernel_size: kernel size of positionwise conv1d layer |
|
padding_idx: padding_idx for input_layer=embed |
|
block_size: block size for contextual block processing |
|
hop_Size: hop size for block processing |
|
look_ahead: look-ahead size for block_processing |
|
init_average: whether to use average as initial context (otherwise max values) |
|
ctx_pos_enc: whether to use positional encoding to the context vectors |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_size: int, |
|
output_size: int = 256, |
|
attention_heads: int = 4, |
|
linear_units: int = 2048, |
|
num_blocks: int = 6, |
|
dropout_rate: float = 0.1, |
|
positional_dropout_rate: float = 0.1, |
|
attention_dropout_rate: float = 0.0, |
|
input_layer: Optional[str] = "conv2d", |
|
pos_enc_class=PositionalEncoding, |
|
normalize_before: bool = True, |
|
concat_after: bool = False, |
|
positionwise_layer_type: str = "linear", |
|
positionwise_conv_kernel_size: int = 1, |
|
padding_idx: int = -1, |
|
block_size: int = 40, |
|
hop_size: int = 16, |
|
look_ahead: int = 16, |
|
init_average: bool = True, |
|
ctx_pos_enc: bool = True, |
|
): |
|
assert check_argument_types() |
|
super().__init__() |
|
self._output_size = output_size |
|
|
|
self.pos_enc = pos_enc_class(output_size, positional_dropout_rate) |
|
|
|
if input_layer == "linear": |
|
self.embed = torch.nn.Sequential( |
|
torch.nn.Linear(input_size, output_size), |
|
torch.nn.LayerNorm(output_size), |
|
torch.nn.Dropout(dropout_rate), |
|
torch.nn.ReLU(), |
|
) |
|
elif input_layer == "conv2d": |
|
self.embed = Conv2dSubsamplingWOPosEnc( |
|
input_size, output_size, dropout_rate, kernels=[3, 3], strides=[2, 2] |
|
) |
|
elif input_layer == "conv2d6": |
|
self.embed = Conv2dSubsamplingWOPosEnc( |
|
input_size, output_size, dropout_rate, kernels=[3, 5], strides=[2, 3] |
|
) |
|
elif input_layer == "conv2d8": |
|
self.embed = Conv2dSubsamplingWOPosEnc( |
|
input_size, |
|
output_size, |
|
dropout_rate, |
|
kernels=[3, 3, 3], |
|
strides=[2, 2, 2], |
|
) |
|
elif input_layer == "embed": |
|
self.embed = torch.nn.Sequential( |
|
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx), |
|
) |
|
elif input_layer is None: |
|
self.embed = None |
|
else: |
|
raise ValueError("unknown input_layer: " + input_layer) |
|
self.normalize_before = normalize_before |
|
if positionwise_layer_type == "linear": |
|
positionwise_layer = PositionwiseFeedForward |
|
positionwise_layer_args = ( |
|
output_size, |
|
linear_units, |
|
dropout_rate, |
|
) |
|
elif positionwise_layer_type == "conv1d": |
|
positionwise_layer = MultiLayeredConv1d |
|
positionwise_layer_args = ( |
|
output_size, |
|
linear_units, |
|
positionwise_conv_kernel_size, |
|
dropout_rate, |
|
) |
|
elif positionwise_layer_type == "conv1d-linear": |
|
positionwise_layer = Conv1dLinear |
|
positionwise_layer_args = ( |
|
output_size, |
|
linear_units, |
|
positionwise_conv_kernel_size, |
|
dropout_rate, |
|
) |
|
else: |
|
raise NotImplementedError("Support only linear or conv1d.") |
|
self.encoders = repeat( |
|
num_blocks, |
|
lambda lnum: ContextualBlockEncoderLayer( |
|
output_size, |
|
MultiHeadedAttention( |
|
attention_heads, output_size, attention_dropout_rate |
|
), |
|
positionwise_layer(*positionwise_layer_args), |
|
dropout_rate, |
|
num_blocks, |
|
normalize_before, |
|
concat_after, |
|
), |
|
) |
|
if self.normalize_before: |
|
self.after_norm = LayerNorm(output_size) |
|
|
|
|
|
self.block_size = block_size |
|
self.hop_size = hop_size |
|
self.look_ahead = look_ahead |
|
self.init_average = init_average |
|
self.ctx_pos_enc = ctx_pos_enc |
|
|
|
def output_size(self) -> int: |
|
return self._output_size |
|
|
|
def forward( |
|
self, |
|
xs_pad: torch.Tensor, |
|
ilens: torch.Tensor, |
|
prev_states: torch.Tensor = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: |
|
"""Embed positions in tensor. |
|
|
|
Args: |
|
xs_pad: input tensor (B, L, D) |
|
ilens: input length (B) |
|
prev_states: Not to be used now. |
|
Returns: |
|
position embedded tensor and mask |
|
""" |
|
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device) |
|
|
|
if isinstance(self.embed, Conv2dSubsamplingWOPosEnc): |
|
xs_pad, masks = self.embed(xs_pad, masks) |
|
elif self.embed is not None: |
|
xs_pad = self.embed(xs_pad) |
|
|
|
|
|
total_frame_num = xs_pad.size(1) |
|
ys_pad = xs_pad.new_zeros(xs_pad.size()) |
|
|
|
past_size = self.block_size - self.hop_size - self.look_ahead |
|
|
|
|
|
|
|
if self.block_size == 0 or total_frame_num <= self.block_size: |
|
xs_pad, masks, _, _, _ = self.encoders( |
|
self.pos_enc(xs_pad), masks, None, None |
|
) |
|
if self.normalize_before: |
|
xs_pad = self.after_norm(xs_pad) |
|
|
|
olens = masks.squeeze(1).sum(1) |
|
return xs_pad, olens, None |
|
|
|
|
|
cur_hop = 0 |
|
block_num = math.ceil( |
|
float(total_frame_num - past_size - self.look_ahead) / float(self.hop_size) |
|
) |
|
bsize = xs_pad.size(0) |
|
addin = xs_pad.new_zeros( |
|
bsize, block_num, xs_pad.size(-1) |
|
) |
|
|
|
|
|
if self.init_average: |
|
addin[:, 0, :] = xs_pad.narrow(1, cur_hop, self.block_size).mean(1) |
|
else: |
|
addin[:, 0, :] = xs_pad.narrow(1, cur_hop, self.block_size).max(1) |
|
cur_hop += self.hop_size |
|
|
|
while cur_hop + self.block_size < total_frame_num: |
|
if self.init_average: |
|
addin[:, cur_hop // self.hop_size, :] = xs_pad.narrow( |
|
1, cur_hop, self.block_size |
|
).mean(1) |
|
else: |
|
addin[:, cur_hop // self.hop_size, :] = xs_pad.narrow( |
|
1, cur_hop, self.block_size |
|
).max(1) |
|
cur_hop += self.hop_size |
|
|
|
if cur_hop < total_frame_num and cur_hop // self.hop_size < block_num: |
|
if self.init_average: |
|
addin[:, cur_hop // self.hop_size, :] = xs_pad.narrow( |
|
1, cur_hop, total_frame_num - cur_hop |
|
).mean(1) |
|
else: |
|
addin[:, cur_hop // self.hop_size, :] = xs_pad.narrow( |
|
1, cur_hop, total_frame_num - cur_hop |
|
).max(1) |
|
|
|
if self.ctx_pos_enc: |
|
addin = self.pos_enc(addin) |
|
|
|
xs_pad = self.pos_enc(xs_pad) |
|
|
|
|
|
mask_online = xs_pad.new_zeros( |
|
xs_pad.size(0), block_num, self.block_size + 2, self.block_size + 2 |
|
) |
|
mask_online.narrow(2, 1, self.block_size + 1).narrow( |
|
3, 0, self.block_size + 1 |
|
).fill_(1) |
|
|
|
xs_chunk = xs_pad.new_zeros( |
|
bsize, block_num, self.block_size + 2, xs_pad.size(-1) |
|
) |
|
|
|
|
|
|
|
left_idx = 0 |
|
block_idx = 0 |
|
xs_chunk[:, block_idx, 1 : self.block_size + 1] = xs_pad.narrow( |
|
-2, left_idx, self.block_size |
|
) |
|
left_idx += self.hop_size |
|
block_idx += 1 |
|
|
|
while left_idx + self.block_size < total_frame_num and block_idx < block_num: |
|
xs_chunk[:, block_idx, 1 : self.block_size + 1] = xs_pad.narrow( |
|
-2, left_idx, self.block_size |
|
) |
|
left_idx += self.hop_size |
|
block_idx += 1 |
|
|
|
last_size = total_frame_num - left_idx |
|
xs_chunk[:, block_idx, 1 : last_size + 1] = xs_pad.narrow( |
|
-2, left_idx, last_size |
|
) |
|
|
|
|
|
xs_chunk[:, 0, 0] = addin[:, 0] |
|
xs_chunk[:, 1:, 0] = addin[:, 0 : block_num - 1] |
|
xs_chunk[:, :, self.block_size + 1] = addin |
|
|
|
|
|
ys_chunk, mask_online, _, _, _ = self.encoders(xs_chunk, mask_online, xs_chunk) |
|
|
|
|
|
|
|
offset = self.block_size - self.look_ahead - self.hop_size + 1 |
|
left_idx = 0 |
|
block_idx = 0 |
|
cur_hop = self.block_size - self.look_ahead |
|
ys_pad[:, left_idx:cur_hop] = ys_chunk[:, block_idx, 1 : cur_hop + 1] |
|
left_idx += self.hop_size |
|
block_idx += 1 |
|
|
|
while left_idx + self.block_size < total_frame_num and block_idx < block_num: |
|
ys_pad[:, cur_hop : cur_hop + self.hop_size] = ys_chunk[ |
|
:, block_idx, offset : offset + self.hop_size |
|
] |
|
cur_hop += self.hop_size |
|
left_idx += self.hop_size |
|
block_idx += 1 |
|
ys_pad[:, cur_hop:total_frame_num] = ys_chunk[ |
|
:, block_idx, offset : last_size + 1, : |
|
] |
|
|
|
if self.normalize_before: |
|
ys_pad = self.after_norm(ys_pad) |
|
|
|
olens = masks.squeeze(1).sum(1) |
|
return ys_pad, olens, None |
|
|