|
|
|
|
|
|
|
"""Encoder definition.""" |
|
from typing import Optional |
|
from typing import Tuple |
|
|
|
import torch |
|
from typeguard import check_argument_types |
|
|
|
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask |
|
from espnet.nets.pytorch_backend.transformer.attention import MultiHeadedAttention |
|
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding |
|
from espnet.nets.pytorch_backend.transformer.encoder_layer import EncoderLayer |
|
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm |
|
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import Conv1dLinear |
|
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import MultiLayeredConv1d |
|
from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import ( |
|
PositionwiseFeedForward, |
|
) |
|
from espnet.nets.pytorch_backend.transformer.repeat import repeat |
|
from espnet.nets.pytorch_backend.transformer.subsampling import check_short_utt |
|
from espnet.nets.pytorch_backend.transformer.subsampling import Conv2dSubsampling |
|
from espnet.nets.pytorch_backend.transformer.subsampling import Conv2dSubsampling6 |
|
from espnet.nets.pytorch_backend.transformer.subsampling import Conv2dSubsampling8 |
|
from espnet.nets.pytorch_backend.transformer.subsampling import TooShortUttError |
|
from espnet2.asr.encoder.abs_encoder import AbsEncoder |
|
|
|
|
|
class TransformerEncoder(AbsEncoder): |
|
"""Transformer encoder module. |
|
|
|
Args: |
|
input_size: input dim |
|
output_size: dimension of attention |
|
attention_heads: the number of heads of multi head attention |
|
linear_units: the number of units of position-wise feed forward |
|
num_blocks: the number of decoder blocks |
|
dropout_rate: dropout rate |
|
attention_dropout_rate: dropout rate in attention |
|
positional_dropout_rate: dropout rate after adding positional encoding |
|
input_layer: input layer type |
|
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding |
|
normalize_before: whether to use layer_norm before the first block |
|
concat_after: whether to concat attention layer's input and output |
|
if True, additional linear will be applied. |
|
i.e. x -> x + linear(concat(x, att(x))) |
|
if False, no additional linear will be applied. |
|
i.e. x -> x + att(x) |
|
positionwise_layer_type: linear of conv1d |
|
positionwise_conv_kernel_size: kernel size of positionwise conv1d layer |
|
padding_idx: padding_idx for input_layer=embed |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_size: int, |
|
output_size: int = 256, |
|
attention_heads: int = 4, |
|
linear_units: int = 2048, |
|
num_blocks: int = 6, |
|
dropout_rate: float = 0.1, |
|
positional_dropout_rate: float = 0.1, |
|
attention_dropout_rate: float = 0.0, |
|
input_layer: Optional[str] = "conv2d", |
|
pos_enc_class=PositionalEncoding, |
|
normalize_before: bool = True, |
|
concat_after: bool = False, |
|
positionwise_layer_type: str = "linear", |
|
positionwise_conv_kernel_size: int = 1, |
|
padding_idx: int = -1, |
|
): |
|
assert check_argument_types() |
|
super().__init__() |
|
self._output_size = output_size |
|
|
|
if input_layer == "linear": |
|
self.embed = torch.nn.Sequential( |
|
torch.nn.Linear(input_size, output_size), |
|
torch.nn.LayerNorm(output_size), |
|
torch.nn.Dropout(dropout_rate), |
|
torch.nn.ReLU(), |
|
pos_enc_class(output_size, positional_dropout_rate), |
|
) |
|
elif input_layer == "conv2d": |
|
self.embed = Conv2dSubsampling(input_size, output_size, dropout_rate) |
|
elif input_layer == "conv2d6": |
|
self.embed = Conv2dSubsampling6(input_size, output_size, dropout_rate) |
|
elif input_layer == "conv2d8": |
|
self.embed = Conv2dSubsampling8(input_size, output_size, dropout_rate) |
|
elif input_layer == "embed": |
|
self.embed = torch.nn.Sequential( |
|
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx), |
|
pos_enc_class(output_size, positional_dropout_rate), |
|
) |
|
elif input_layer is None: |
|
self.embed = torch.nn.Sequential( |
|
pos_enc_class(output_size, positional_dropout_rate) |
|
) |
|
else: |
|
raise ValueError("unknown input_layer: " + input_layer) |
|
self.normalize_before = normalize_before |
|
if positionwise_layer_type == "linear": |
|
positionwise_layer = PositionwiseFeedForward |
|
positionwise_layer_args = ( |
|
output_size, |
|
linear_units, |
|
dropout_rate, |
|
) |
|
elif positionwise_layer_type == "conv1d": |
|
positionwise_layer = MultiLayeredConv1d |
|
positionwise_layer_args = ( |
|
output_size, |
|
linear_units, |
|
positionwise_conv_kernel_size, |
|
dropout_rate, |
|
) |
|
elif positionwise_layer_type == "conv1d-linear": |
|
positionwise_layer = Conv1dLinear |
|
positionwise_layer_args = ( |
|
output_size, |
|
linear_units, |
|
positionwise_conv_kernel_size, |
|
dropout_rate, |
|
) |
|
else: |
|
raise NotImplementedError("Support only linear or conv1d.") |
|
self.encoders = repeat( |
|
num_blocks, |
|
lambda lnum: EncoderLayer( |
|
output_size, |
|
MultiHeadedAttention( |
|
attention_heads, output_size, attention_dropout_rate |
|
), |
|
positionwise_layer(*positionwise_layer_args), |
|
dropout_rate, |
|
normalize_before, |
|
concat_after, |
|
), |
|
) |
|
if self.normalize_before: |
|
self.after_norm = LayerNorm(output_size) |
|
|
|
def output_size(self) -> int: |
|
return self._output_size |
|
|
|
def forward( |
|
self, |
|
xs_pad: torch.Tensor, |
|
ilens: torch.Tensor, |
|
prev_states: torch.Tensor = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: |
|
"""Embed positions in tensor. |
|
|
|
Args: |
|
xs_pad: input tensor (B, L, D) |
|
ilens: input length (B) |
|
prev_states: Not to be used now. |
|
Returns: |
|
position embedded tensor and mask |
|
""" |
|
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device) |
|
|
|
if ( |
|
isinstance(self.embed, Conv2dSubsampling) |
|
or isinstance(self.embed, Conv2dSubsampling6) |
|
or isinstance(self.embed, Conv2dSubsampling8) |
|
): |
|
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1)) |
|
if short_status: |
|
raise TooShortUttError( |
|
f"has {xs_pad.size(1)} frames and is too short for subsampling " |
|
+ f"(it needs more than {limit_size} frames), return empty results", |
|
xs_pad.size(1), |
|
limit_size, |
|
) |
|
xs_pad, masks = self.embed(xs_pad, masks) |
|
else: |
|
xs_pad = self.embed(xs_pad) |
|
xs_pad, masks = self.encoders(xs_pad, masks) |
|
if self.normalize_before: |
|
xs_pad = self.after_norm(xs_pad) |
|
|
|
olens = masks.squeeze(1).sum(1) |
|
return xs_pad, olens, None |
|
|