|
import collections |
|
from pathlib import Path |
|
from typing import Union |
|
|
|
import numpy as np |
|
from typeguard import check_argument_types |
|
|
|
from espnet2.fileio.read_text import load_num_sequence_text |
|
|
|
|
|
class FloatRandomGenerateDataset(collections.abc.Mapping): |
|
"""Generate float array from shape.txt. |
|
|
|
Examples: |
|
shape.txt |
|
uttA 123,83 |
|
uttB 34,83 |
|
>>> dataset = FloatRandomGenerateDataset("shape.txt") |
|
>>> array = dataset["uttA"] |
|
>>> assert array.shape == (123, 83) |
|
>>> array = dataset["uttB"] |
|
>>> assert array.shape == (34, 83) |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
shape_file: Union[Path, str], |
|
dtype: Union[str, np.dtype] = "float32", |
|
loader_type: str = "csv_int", |
|
): |
|
assert check_argument_types() |
|
shape_file = Path(shape_file) |
|
self.utt2shape = load_num_sequence_text(shape_file, loader_type) |
|
self.dtype = np.dtype(dtype) |
|
|
|
def __iter__(self): |
|
return iter(self.utt2shape) |
|
|
|
def __len__(self): |
|
return len(self.utt2shape) |
|
|
|
def __getitem__(self, item) -> np.ndarray: |
|
shape = self.utt2shape[item] |
|
return np.random.randn(*shape).astype(self.dtype) |
|
|
|
|
|
class IntRandomGenerateDataset(collections.abc.Mapping): |
|
"""Generate float array from shape.txt |
|
|
|
Examples: |
|
shape.txt |
|
uttA 123,83 |
|
uttB 34,83 |
|
>>> dataset = IntRandomGenerateDataset("shape.txt", low=0, high=10) |
|
>>> array = dataset["uttA"] |
|
>>> assert array.shape == (123, 83) |
|
>>> array = dataset["uttB"] |
|
>>> assert array.shape == (34, 83) |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
shape_file: Union[Path, str], |
|
low: int, |
|
high: int = None, |
|
dtype: Union[str, np.dtype] = "int64", |
|
loader_type: str = "csv_int", |
|
): |
|
assert check_argument_types() |
|
shape_file = Path(shape_file) |
|
self.utt2shape = load_num_sequence_text(shape_file, loader_type) |
|
self.dtype = np.dtype(dtype) |
|
self.low = low |
|
self.high = high |
|
|
|
def __iter__(self): |
|
return iter(self.utt2shape) |
|
|
|
def __len__(self): |
|
return len(self.utt2shape) |
|
|
|
def __getitem__(self, item) -> np.ndarray: |
|
shape = self.utt2shape[item] |
|
return np.random.randint(self.low, self.high, size=shape, dtype=self.dtype) |
|
|