conex / espnet2 /tts /duration_calculator.py
tobiasc's picture
Initial commit
ad16788
raw
history blame
2.28 kB
# -*- coding: utf-8 -*-
# Copyright 2020 Nagoya University (Tomoki Hayashi)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Duration calculator for ESPnet2."""
from typing import Tuple
import torch
class DurationCalculator(torch.nn.Module):
"""Duration calculator module."""
def __init__(self):
"""Initilize duration calculator."""
super().__init__()
@torch.no_grad()
def forward(self, att_ws: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Convert attention weight to durations.
Args:
att_ws (Tesnor): Attention weight tensor (L, T) or (#layers, #heads, L, T).
Returns:
LongTensor: Duration of each input (T,).
Tensor: Focus rate value.
"""
duration = self._calculate_duration(att_ws)
focus_rate = self._calculate_focus_rete(att_ws)
return duration, focus_rate
@staticmethod
def _calculate_focus_rete(att_ws):
if len(att_ws.shape) == 2:
# tacotron 2 case -> (L, T)
return att_ws.max(dim=-1)[0].mean()
elif len(att_ws.shape) == 4:
# transformer case -> (#layers, #heads, L, T)
return att_ws.max(dim=-1)[0].mean(dim=-1).max()
else:
raise ValueError("att_ws should be 2 or 4 dimensional tensor.")
@staticmethod
def _calculate_duration(att_ws):
if len(att_ws.shape) == 2:
# tacotron 2 case -> (L, T)
pass
elif len(att_ws.shape) == 4:
# transformer case -> (#layers, #heads, L, T)
# get the most diagonal head according to focus rate
att_ws = torch.cat(
[att_w for att_w in att_ws], dim=0
) # (#heads * #layers, L, T)
diagonal_scores = att_ws.max(dim=-1)[0].mean(dim=-1) # (#heads * #layers,)
diagonal_head_idx = diagonal_scores.argmax()
att_ws = att_ws[diagonal_head_idx] # (L, T)
else:
raise ValueError("att_ws should be 2 or 4 dimensional tensor.")
# calculate duration from 2d attention weight
durations = torch.stack(
[att_ws.argmax(-1).eq(i).sum() for i in range(att_ws.shape[1])]
)
return durations.view(-1)