conex / espnet2 /enh /espnet_model.py
tobiasc's picture
Initial commit
ad16788
raw
history blame
25.4 kB
from distutils.version import LooseVersion
from functools import reduce
from itertools import permutations
from typing import Dict
from typing import Optional
from typing import Tuple
import torch
from torch_complex.tensor import ComplexTensor
from typeguard import check_argument_types
from espnet2.enh.decoder.abs_decoder import AbsDecoder
from espnet2.enh.encoder.abs_encoder import AbsEncoder
from espnet2.enh.encoder.conv_encoder import ConvEncoder
from espnet2.enh.separator.abs_separator import AbsSeparator
from espnet2.torch_utils.device_funcs import force_gatherable
from espnet2.train.abs_espnet_model import AbsESPnetModel
is_torch_1_3_plus = LooseVersion(torch.__version__) >= LooseVersion("1.3.0")
ALL_LOSS_TYPES = (
# mse_loss(predicted_mask, target_label)
"mask_mse",
# mse_loss(enhanced_magnitude_spectrum, target_magnitude_spectrum)
"magnitude",
# mse_loss(enhanced_complex_spectrum, target_complex_spectrum)
"spectrum",
# log_mse_loss(enhanced_complex_spectrum, target_complex_spectrum)
"spectrum_log",
# si_snr(enhanced_waveform, target_waveform)
"si_snr",
)
EPS = torch.finfo(torch.get_default_dtype()).eps
class ESPnetEnhancementModel(AbsESPnetModel):
"""Speech enhancement or separation Frontend model"""
def __init__(
self,
encoder: AbsEncoder,
separator: AbsSeparator,
decoder: AbsDecoder,
stft_consistency: bool = False,
loss_type: str = "mask_mse",
mask_type: Optional[str] = None,
):
assert check_argument_types()
super().__init__()
self.encoder = encoder
self.separator = separator
self.decoder = decoder
self.num_spk = separator.num_spk
self.num_noise_type = getattr(self.separator, "num_noise_type", 1)
if loss_type != "si_snr" and isinstance(encoder, ConvEncoder):
raise TypeError(f"{loss_type} is not supported with {type(ConvEncoder)}")
# get mask type for TF-domain models (only used when loss_type="mask_*")
self.mask_type = mask_type.upper() if mask_type else None
# get loss type for model training
self.loss_type = loss_type
# whether to compute the TF-domain loss while enforcing STFT consistency
self.stft_consistency = stft_consistency
if stft_consistency and loss_type in ["mask_mse", "si_snr"]:
raise ValueError(
f"stft_consistency will not work when '{loss_type}' loss is used"
)
assert self.loss_type in ALL_LOSS_TYPES, self.loss_type
# for multi-channel signal
self.ref_channel = getattr(self.separator, "ref_channel", -1)
@staticmethod
def _create_mask_label(mix_spec, ref_spec, mask_type="IAM"):
"""Create mask label.
Args:
mix_spec: ComplexTensor(B, T, F)
ref_spec: List[ComplexTensor(B, T, F), ...]
mask_type: str
Returns:
labels: List[Tensor(B, T, F), ...] or List[ComplexTensor(B, T, F), ...]
"""
# Must be upper case
assert mask_type in [
"IBM",
"IRM",
"IAM",
"PSM",
"NPSM",
"PSM^2",
], f"mask type {mask_type} not supported"
mask_label = []
for r in ref_spec:
mask = None
if mask_type == "IBM":
flags = [abs(r) >= abs(n) for n in ref_spec]
mask = reduce(lambda x, y: x * y, flags)
mask = mask.int()
elif mask_type == "IRM":
# TODO(Wangyou): need to fix this,
# as noise referecens are provided separately
mask = abs(r) / (sum(([abs(n) for n in ref_spec])) + EPS)
elif mask_type == "IAM":
mask = abs(r) / (abs(mix_spec) + EPS)
mask = mask.clamp(min=0, max=1)
elif mask_type == "PSM" or mask_type == "NPSM":
phase_r = r / (abs(r) + EPS)
phase_mix = mix_spec / (abs(mix_spec) + EPS)
# cos(a - b) = cos(a)*cos(b) + sin(a)*sin(b)
cos_theta = (
phase_r.real * phase_mix.real + phase_r.imag * phase_mix.imag
)
mask = (abs(r) / (abs(mix_spec) + EPS)) * cos_theta
mask = (
mask.clamp(min=0, max=1)
if mask_type == "NPSM"
else mask.clamp(min=-1, max=1)
)
elif mask_type == "PSM^2":
# This is for training beamforming masks
phase_r = r / (abs(r) + EPS)
phase_mix = mix_spec / (abs(mix_spec) + EPS)
# cos(a - b) = cos(a)*cos(b) + sin(a)*sin(b)
cos_theta = (
phase_r.real * phase_mix.real + phase_r.imag * phase_mix.imag
)
mask = (abs(r).pow(2) / (abs(mix_spec).pow(2) + EPS)) * cos_theta
mask = mask.clamp(min=-1, max=1)
assert mask is not None, f"mask type {mask_type} not supported"
mask_label.append(mask)
return mask_label
def forward(
self,
speech_mix: torch.Tensor,
speech_mix_lengths: torch.Tensor = None,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech_mix: (Batch, samples) or (Batch, samples, channels)
speech_ref: (Batch, num_speaker, samples)
or (Batch, num_speaker, samples, channels)
speech_mix_lengths: (Batch,), default None for chunk interator,
because the chunk-iterator does not have the
speech_lengths returned. see in
espnet2/iterators/chunk_iter_factory.py
"""
# clean speech signal of each speaker
speech_ref = [
kwargs["speech_ref{}".format(spk + 1)] for spk in range(self.num_spk)
]
# (Batch, num_speaker, samples) or (Batch, num_speaker, samples, channels)
speech_ref = torch.stack(speech_ref, dim=1)
if "noise_ref1" in kwargs:
# noise signal (optional, required when using
# frontend models with beamformering)
noise_ref = [
kwargs["noise_ref{}".format(n + 1)] for n in range(self.num_noise_type)
]
# (Batch, num_noise_type, samples) or
# (Batch, num_noise_type, samples, channels)
noise_ref = torch.stack(noise_ref, dim=1)
else:
noise_ref = None
# dereverberated (noisy) signal
# (optional, only used for frontend models with WPE)
if "dereverb_ref1" in kwargs:
# noise signal (optional, required when using
# frontend models with beamformering)
dereverb_speech_ref = [
kwargs["dereverb_ref{}".format(n + 1)]
for n in range(self.num_spk)
if "dereverb_ref{}".format(n + 1) in kwargs
]
assert len(dereverb_speech_ref) in (1, self.num_spk), len(
dereverb_speech_ref
)
# (Batch, N, samples) or (Batch, N, samples, channels)
dereverb_speech_ref = torch.stack(dereverb_speech_ref, dim=1)
else:
dereverb_speech_ref = None
batch_size = speech_mix.shape[0]
speech_lengths = (
speech_mix_lengths
if speech_mix_lengths is not None
else torch.ones(batch_size).int().fill_(speech_mix.shape[1])
)
assert speech_lengths.dim() == 1, speech_lengths.shape
# Check that batch_size is unified
assert speech_mix.shape[0] == speech_ref.shape[0] == speech_lengths.shape[0], (
speech_mix.shape,
speech_ref.shape,
speech_lengths.shape,
)
# for data-parallel
speech_ref = speech_ref[:, :, : speech_lengths.max()]
speech_mix = speech_mix[:, : speech_lengths.max()]
loss, speech_pre, others, out_lengths, perm = self._compute_loss(
speech_mix,
speech_lengths,
speech_ref,
dereverb_speech_ref=dereverb_speech_ref,
noise_ref=noise_ref,
)
# add stats for logging
if self.loss_type != "si_snr":
if self.training:
si_snr = None
else:
speech_pre = [self.decoder(ps, speech_lengths)[0] for ps in speech_pre]
speech_ref = torch.unbind(speech_ref, dim=1)
if speech_ref[0].dim() == 3:
# For si_snr loss, only select one channel as the reference
speech_ref = [sr[..., self.ref_channel] for sr in speech_ref]
# compute si-snr loss
si_snr_loss, perm = self._permutation_loss(
speech_ref, speech_pre, self.si_snr_loss, perm=perm
)
si_snr = -si_snr_loss.detach()
stats = dict(
si_snr=si_snr,
loss=loss.detach(),
)
else:
stats = dict(si_snr=-loss.detach(), loss=loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def _compute_loss(
self,
speech_mix,
speech_lengths,
speech_ref,
dereverb_speech_ref=None,
noise_ref=None,
cal_loss=True,
):
"""Compute loss according to self.loss_type.
Args:
speech_mix: (Batch, samples) or (Batch, samples, channels)
speech_lengths: (Batch,), default None for chunk interator,
because the chunk-iterator does not have the
speech_lengths returned. see in
espnet2/iterators/chunk_iter_factory.py
speech_ref: (Batch, num_speaker, samples)
or (Batch, num_speaker, samples, channels)
dereverb_speech_ref: (Batch, N, samples)
or (Batch, num_speaker, samples, channels)
noise_ref: (Batch, num_noise_type, samples)
or (Batch, num_speaker, samples, channels)
cal_loss: whether to calculate enh loss, defualt is True
Returns:
loss: (torch.Tensor) speech enhancement loss
speech_pre: (List[torch.Tensor] or List[ComplexTensor])
enhanced speech or spectrum(s)
others: (OrderedDict) estimated masks or None
output_lengths: (Batch,)
perm: () best permutation
"""
feature_mix, flens = self.encoder(speech_mix, speech_lengths)
feature_pre, flens, others = self.separator(feature_mix, flens)
if self.loss_type != "si_snr":
spectrum_mix = feature_mix
spectrum_pre = feature_pre
# predict separated speech and masks
if self.stft_consistency:
# pseudo STFT -> time-domain -> STFT (compute loss)
tmp_t_domain = [
self.decoder(sp, speech_lengths)[0] for sp in spectrum_pre
]
spectrum_pre = [
self.encoder(sp, speech_lengths)[0] for sp in tmp_t_domain
]
pass
if spectrum_pre is not None and not isinstance(
spectrum_pre[0], ComplexTensor
):
spectrum_pre = [
ComplexTensor(*torch.unbind(sp, dim=-1)) for sp in spectrum_pre
]
if not cal_loss:
loss, perm = None, None
return loss, spectrum_pre, others, flens, perm
# prepare reference speech and reference spectrum
speech_ref = torch.unbind(speech_ref, dim=1)
# List[ComplexTensor(Batch, T, F)] or List[ComplexTensor(Batch, T, C, F)]
spectrum_ref = [self.encoder(sr, speech_lengths)[0] for sr in speech_ref]
# compute TF masking loss
if self.loss_type == "magnitude":
# compute loss on magnitude spectrum
assert spectrum_pre is not None
magnitude_pre = [abs(ps + 1e-15) for ps in spectrum_pre]
if spectrum_ref[0].dim() > magnitude_pre[0].dim():
# only select one channel as the reference
magnitude_ref = [
abs(sr[..., self.ref_channel, :]) for sr in spectrum_ref
]
else:
magnitude_ref = [abs(sr) for sr in spectrum_ref]
tf_loss, perm = self._permutation_loss(
magnitude_ref, magnitude_pre, self.tf_mse_loss
)
elif self.loss_type.startswith("spectrum"):
# compute loss on complex spectrum
if self.loss_type == "spectrum":
loss_func = self.tf_mse_loss
elif self.loss_type == "spectrum_log":
loss_func = self.tf_log_mse_loss
else:
raise ValueError("Unsupported loss type: %s" % self.loss_type)
assert spectrum_pre is not None
if spectrum_ref[0].dim() > spectrum_pre[0].dim():
# only select one channel as the reference
spectrum_ref = [sr[..., self.ref_channel, :] for sr in spectrum_ref]
tf_loss, perm = self._permutation_loss(
spectrum_ref, spectrum_pre, loss_func
)
elif self.loss_type.startswith("mask"):
if self.loss_type == "mask_mse":
loss_func = self.tf_mse_loss
else:
raise ValueError("Unsupported loss type: %s" % self.loss_type)
assert others is not None
mask_pre_ = [
others["mask_spk{}".format(spk + 1)] for spk in range(self.num_spk)
]
# prepare ideal masks
mask_ref = self._create_mask_label(
spectrum_mix, spectrum_ref, mask_type=self.mask_type
)
# compute TF masking loss
tf_loss, perm = self._permutation_loss(mask_ref, mask_pre_, loss_func)
if "mask_dereverb1" in others:
if dereverb_speech_ref is None:
raise ValueError(
"No dereverberated reference for training!\n"
'Please specify "--use_dereverb_ref true" in run.sh'
)
mask_wpe_pre = [
others["mask_dereverb{}".format(spk + 1)]
for spk in range(self.num_spk)
if "mask_dereverb{}".format(spk + 1) in others
]
assert len(mask_wpe_pre) == dereverb_speech_ref.size(1), (
len(mask_wpe_pre),
dereverb_speech_ref.size(1),
)
dereverb_speech_ref = torch.unbind(dereverb_speech_ref, dim=1)
dereverb_spectrum_ref = [
self.encoder(dr, speech_lengths)[0]
for dr in dereverb_speech_ref
]
dereverb_mask_ref = self._create_mask_label(
spectrum_mix, dereverb_spectrum_ref, mask_type=self.mask_type
)
tf_dereverb_loss, perm_d = self._permutation_loss(
dereverb_mask_ref, mask_wpe_pre, loss_func
)
tf_loss = tf_loss + tf_dereverb_loss
if "mask_noise1" in others:
if noise_ref is None:
raise ValueError(
"No noise reference for training!\n"
'Please specify "--use_noise_ref true" in run.sh'
)
noise_ref = torch.unbind(noise_ref, dim=1)
noise_spectrum_ref = [
self.encoder(nr, speech_lengths)[0] for nr in noise_ref
]
noise_mask_ref = self._create_mask_label(
spectrum_mix, noise_spectrum_ref, mask_type=self.mask_type
)
mask_noise_pre = [
others["mask_noise{}".format(n + 1)]
for n in range(self.num_noise_type)
]
tf_noise_loss, perm_n = self._permutation_loss(
noise_mask_ref, mask_noise_pre, loss_func
)
tf_loss = tf_loss + tf_noise_loss
else:
raise ValueError("Unsupported loss type: %s" % self.loss_type)
loss = tf_loss
return loss, spectrum_pre, others, flens, perm
else:
speech_pre = [self.decoder(ps, speech_lengths)[0] for ps in feature_pre]
if not cal_loss:
loss, perm = None, None
return loss, speech_pre, None, speech_lengths, perm
# speech_pre: list[(batch, sample)]
assert speech_pre[0].dim() == 2, speech_pre[0].dim()
if speech_ref.dim() == 4:
# For si_snr loss of multi-channel input,
# only select one channel as the reference
speech_ref = speech_ref[..., self.ref_channel]
speech_ref = torch.unbind(speech_ref, dim=1)
# compute si-snr loss
si_snr_loss, perm = self._permutation_loss(
speech_ref, speech_pre, self.si_snr_loss_zeromean
)
loss = si_snr_loss
return loss, speech_pre, None, speech_lengths, perm
@staticmethod
def tf_mse_loss(ref, inf):
"""time-frequency MSE loss.
Args:
ref: (Batch, T, F) or (Batch, T, C, F)
inf: (Batch, T, F) or (Batch, T, C, F)
Returns:
loss: (Batch,)
"""
assert ref.shape == inf.shape, (ref.shape, inf.shape)
if not is_torch_1_3_plus:
# in case of binary masks
ref = ref.type(inf.dtype)
diff = ref - inf
if isinstance(diff, ComplexTensor):
mseloss = diff.real ** 2 + diff.imag ** 2
else:
mseloss = diff ** 2
if ref.dim() == 3:
mseloss = mseloss.mean(dim=[1, 2])
elif ref.dim() == 4:
mseloss = mseloss.mean(dim=[1, 2, 3])
else:
raise ValueError(
"Invalid input shape: ref={}, inf={}".format(ref.shape, inf.shape)
)
return mseloss
@staticmethod
def tf_log_mse_loss(ref, inf):
"""time-frequency log-MSE loss.
Args:
ref: (Batch, T, F) or (Batch, T, C, F)
inf: (Batch, T, F) or (Batch, T, C, F)
Returns:
loss: (Batch,)
"""
assert ref.shape == inf.shape, (ref.shape, inf.shape)
if not is_torch_1_3_plus:
# in case of binary masks
ref = ref.type(inf.dtype)
diff = ref - inf
if isinstance(diff, ComplexTensor):
log_mse_loss = diff.real ** 2 + diff.imag ** 2
else:
log_mse_loss = diff ** 2
if ref.dim() == 3:
log_mse_loss = torch.log10(log_mse_loss.sum(dim=[1, 2])) * 10
elif ref.dim() == 4:
log_mse_loss = torch.log10(log_mse_loss.sum(dim=[1, 2, 3])) * 10
else:
raise ValueError(
"Invalid input shape: ref={}, inf={}".format(ref.shape, inf.shape)
)
return log_mse_loss
@staticmethod
def tf_l1_loss(ref, inf):
"""time-frequency L1 loss.
Args:
ref: (Batch, T, F) or (Batch, T, C, F)
inf: (Batch, T, F) or (Batch, T, C, F)
Returns:
loss: (Batch,)
"""
assert ref.shape == inf.shape, (ref.shape, inf.shape)
if not is_torch_1_3_plus:
# in case of binary masks
ref = ref.type(inf.dtype)
if isinstance(inf, ComplexTensor):
l1loss = abs(ref - inf + EPS)
else:
l1loss = abs(ref - inf)
if ref.dim() == 3:
l1loss = l1loss.mean(dim=[1, 2])
elif ref.dim() == 4:
l1loss = l1loss.mean(dim=[1, 2, 3])
else:
raise ValueError(
"Invalid input shape: ref={}, inf={}".format(ref.shape, inf.shape)
)
return l1loss
@staticmethod
def si_snr_loss(ref, inf):
"""SI-SNR loss
Args:
ref: (Batch, samples)
inf: (Batch, samples)
Returns:
loss: (Batch,)
"""
ref = ref / torch.norm(ref, p=2, dim=1, keepdim=True)
inf = inf / torch.norm(inf, p=2, dim=1, keepdim=True)
s_target = (ref * inf).sum(dim=1, keepdims=True) * ref
e_noise = inf - s_target
si_snr = 20 * (
torch.log10(torch.norm(s_target, p=2, dim=1).clamp(min=EPS))
- torch.log10(torch.norm(e_noise, p=2, dim=1).clamp(min=EPS))
)
return -si_snr
@staticmethod
def si_snr_loss_zeromean(ref, inf):
"""SI-SNR loss with zero-mean in pre-processing.
Args:
ref: (Batch, samples)
inf: (Batch, samples)
Returns:
loss: (Batch,)
"""
assert ref.size() == inf.size()
B, T = ref.size()
# mask padding position along T
# Step 1. Zero-mean norm
mean_target = torch.sum(ref, dim=1, keepdim=True) / T
mean_estimate = torch.sum(inf, dim=1, keepdim=True) / T
zero_mean_target = ref - mean_target
zero_mean_estimate = inf - mean_estimate
# Step 2. SI-SNR with order
# reshape to use broadcast
s_target = zero_mean_target # [B, T]
s_estimate = zero_mean_estimate # [B, T]
# s_target = <s', s>s / ||s||^2
pair_wise_dot = torch.sum(s_estimate * s_target, dim=1, keepdim=True) # [B, 1]
s_target_energy = torch.sum(s_target ** 2, dim=1, keepdim=True) + EPS # [B, 1]
pair_wise_proj = pair_wise_dot * s_target / s_target_energy # [B, T]
# e_noise = s' - s_target
e_noise = s_estimate - pair_wise_proj # [B, T]
# SI-SNR = 10 * log_10(||s_target||^2 / ||e_noise||^2)
pair_wise_si_snr = torch.sum(pair_wise_proj ** 2, dim=1) / (
torch.sum(e_noise ** 2, dim=1) + EPS
)
# print('pair_si_snr',pair_wise_si_snr[0,:])
pair_wise_si_snr = 10 * torch.log10(pair_wise_si_snr + EPS) # [B]
# print(pair_wise_si_snr)
return -1 * pair_wise_si_snr
@staticmethod
def _permutation_loss(ref, inf, criterion, perm=None):
"""The basic permutation loss function.
Args:
ref (List[torch.Tensor]): [(batch, ...), ...] x n_spk
inf (List[torch.Tensor]): [(batch, ...), ...]
criterion (function): Loss function
perm (torch.Tensor): specified permutation (batch, num_spk)
Returns:
loss (torch.Tensor): minimum loss with the best permutation (batch)
perm (torch.Tensor): permutation for inf (batch, num_spk)
e.g. tensor([[1, 0, 2], [0, 1, 2]])
"""
assert len(ref) == len(inf), (len(ref), len(inf))
num_spk = len(ref)
def pair_loss(permutation):
return sum(
[criterion(ref[s], inf[t]) for s, t in enumerate(permutation)]
) / len(permutation)
if perm is None:
device = ref[0].device
all_permutations = list(permutations(range(num_spk)))
losses = torch.stack([pair_loss(p) for p in all_permutations], dim=1)
loss, perm = torch.min(losses, dim=1)
perm = torch.index_select(
torch.tensor(all_permutations, device=device, dtype=torch.long),
0,
perm,
)
else:
loss = torch.tensor(
[
torch.tensor(
[
criterion(
ref[s][batch].unsqueeze(0), inf[t][batch].unsqueeze(0)
)
for s, t in enumerate(p)
]
).mean()
for batch, p in enumerate(perm)
]
)
return loss.mean(), perm
def collect_feats(
self, speech_mix: torch.Tensor, speech_mix_lengths: torch.Tensor, **kwargs
) -> Dict[str, torch.Tensor]:
# for data-parallel
speech_mix = speech_mix[:, : speech_mix_lengths.max()]
feats, feats_lengths = speech_mix, speech_mix_lengths
return {"feats": feats, "feats_lengths": feats_lengths}