|
|
|
|
|
|
|
|
|
"""Encoder definition.""" |
|
|
|
import logging |
|
import torch |
|
|
|
from espnet.nets.pytorch_backend.conformer.convolution import ConvolutionModule |
|
from espnet.nets.pytorch_backend.conformer.encoder_layer import EncoderLayer |
|
from espnet.nets.pytorch_backend.nets_utils import get_activation |
|
from espnet.nets.pytorch_backend.transducer.vgg2l import VGG2L |
|
from espnet.nets.pytorch_backend.transformer.attention import ( |
|
MultiHeadedAttention, |
|
RelPositionMultiHeadedAttention, |
|
LegacyRelPositionMultiHeadedAttention, |
|
) |
|
from espnet.nets.pytorch_backend.transformer.embedding import ( |
|
PositionalEncoding, |
|
ScaledPositionalEncoding, |
|
RelPositionalEncoding, |
|
LegacyRelPositionalEncoding, |
|
) |
|
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm |
|
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import Conv1dLinear |
|
from espnet.nets.pytorch_backend.transformer.multi_layer_conv import MultiLayeredConv1d |
|
from espnet.nets.pytorch_backend.transformer.positionwise_feed_forward import ( |
|
PositionwiseFeedForward, |
|
) |
|
from espnet.nets.pytorch_backend.transformer.repeat import repeat |
|
from espnet.nets.pytorch_backend.transformer.subsampling import Conv2dSubsampling |
|
|
|
|
|
class Encoder(torch.nn.Module): |
|
"""Conformer encoder module. |
|
|
|
Args: |
|
idim (int): Input dimension. |
|
attention_dim (int): Dimention of attention. |
|
attention_heads (int): The number of heads of multi head attention. |
|
linear_units (int): The number of units of position-wise feed forward. |
|
num_blocks (int): The number of decoder blocks. |
|
dropout_rate (float): Dropout rate. |
|
positional_dropout_rate (float): Dropout rate after adding positional encoding. |
|
attention_dropout_rate (float): Dropout rate in attention. |
|
input_layer (Union[str, torch.nn.Module]): Input layer type. |
|
normalize_before (bool): Whether to use layer_norm before the first block. |
|
concat_after (bool): Whether to concat attention layer's input and output. |
|
if True, additional linear will be applied. |
|
i.e. x -> x + linear(concat(x, att(x))) |
|
if False, no additional linear will be applied. i.e. x -> x + att(x) |
|
positionwise_layer_type (str): "linear", "conv1d", or "conv1d-linear". |
|
positionwise_conv_kernel_size (int): Kernel size of positionwise conv1d layer. |
|
macaron_style (bool): Whether to use macaron style for positionwise layer. |
|
pos_enc_layer_type (str): Encoder positional encoding layer type. |
|
selfattention_layer_type (str): Encoder attention layer type. |
|
activation_type (str): Encoder activation function type. |
|
use_cnn_module (bool): Whether to use convolution module. |
|
zero_triu (bool): Whether to zero the upper triangular part of attention matrix. |
|
cnn_module_kernel (int): Kernerl size of convolution module. |
|
padding_idx (int): Padding idx for input_layer=embed. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
idim, |
|
attention_dim=256, |
|
attention_heads=4, |
|
linear_units=2048, |
|
num_blocks=6, |
|
dropout_rate=0.1, |
|
positional_dropout_rate=0.1, |
|
attention_dropout_rate=0.0, |
|
input_layer="conv2d", |
|
normalize_before=True, |
|
concat_after=False, |
|
positionwise_layer_type="linear", |
|
positionwise_conv_kernel_size=1, |
|
macaron_style=False, |
|
pos_enc_layer_type="abs_pos", |
|
selfattention_layer_type="selfattn", |
|
activation_type="swish", |
|
use_cnn_module=False, |
|
zero_triu=False, |
|
cnn_module_kernel=31, |
|
padding_idx=-1, |
|
): |
|
"""Construct an Encoder object.""" |
|
super(Encoder, self).__init__() |
|
|
|
activation = get_activation(activation_type) |
|
if pos_enc_layer_type == "abs_pos": |
|
pos_enc_class = PositionalEncoding |
|
elif pos_enc_layer_type == "scaled_abs_pos": |
|
pos_enc_class = ScaledPositionalEncoding |
|
elif pos_enc_layer_type == "rel_pos": |
|
assert selfattention_layer_type == "rel_selfattn" |
|
pos_enc_class = RelPositionalEncoding |
|
elif pos_enc_layer_type == "legacy_rel_pos": |
|
pos_enc_class = LegacyRelPositionalEncoding |
|
assert selfattention_layer_type == "legacy_rel_selfattn" |
|
else: |
|
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type) |
|
|
|
self.conv_subsampling_factor = 1 |
|
if input_layer == "linear": |
|
self.embed = torch.nn.Sequential( |
|
torch.nn.Linear(idim, attention_dim), |
|
torch.nn.LayerNorm(attention_dim), |
|
torch.nn.Dropout(dropout_rate), |
|
pos_enc_class(attention_dim, positional_dropout_rate), |
|
) |
|
elif input_layer == "conv2d": |
|
self.embed = Conv2dSubsampling( |
|
idim, |
|
attention_dim, |
|
dropout_rate, |
|
pos_enc_class(attention_dim, positional_dropout_rate), |
|
) |
|
self.conv_subsampling_factor = 4 |
|
elif input_layer == "vgg2l": |
|
self.embed = VGG2L(idim, attention_dim) |
|
self.conv_subsampling_factor = 4 |
|
elif input_layer == "embed": |
|
self.embed = torch.nn.Sequential( |
|
torch.nn.Embedding(idim, attention_dim, padding_idx=padding_idx), |
|
pos_enc_class(attention_dim, positional_dropout_rate), |
|
) |
|
elif isinstance(input_layer, torch.nn.Module): |
|
self.embed = torch.nn.Sequential( |
|
input_layer, |
|
pos_enc_class(attention_dim, positional_dropout_rate), |
|
) |
|
elif input_layer is None: |
|
self.embed = torch.nn.Sequential( |
|
pos_enc_class(attention_dim, positional_dropout_rate) |
|
) |
|
else: |
|
raise ValueError("unknown input_layer: " + input_layer) |
|
self.normalize_before = normalize_before |
|
|
|
|
|
if selfattention_layer_type == "selfattn": |
|
logging.info("encoder self-attention layer type = self-attention") |
|
encoder_selfattn_layer = MultiHeadedAttention |
|
encoder_selfattn_layer_args = ( |
|
attention_heads, |
|
attention_dim, |
|
attention_dropout_rate, |
|
) |
|
elif selfattention_layer_type == "legacy_rel_selfattn": |
|
assert pos_enc_layer_type == "legacy_rel_pos" |
|
encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention |
|
encoder_selfattn_layer_args = ( |
|
attention_heads, |
|
attention_dim, |
|
attention_dropout_rate, |
|
) |
|
elif selfattention_layer_type == "rel_selfattn": |
|
logging.info("encoder self-attention layer type = relative self-attention") |
|
assert pos_enc_layer_type == "rel_pos" |
|
encoder_selfattn_layer = RelPositionMultiHeadedAttention |
|
encoder_selfattn_layer_args = ( |
|
attention_heads, |
|
attention_dim, |
|
attention_dropout_rate, |
|
zero_triu, |
|
) |
|
else: |
|
raise ValueError("unknown encoder_attn_layer: " + selfattention_layer_type) |
|
|
|
|
|
if positionwise_layer_type == "linear": |
|
positionwise_layer = PositionwiseFeedForward |
|
positionwise_layer_args = ( |
|
attention_dim, |
|
linear_units, |
|
dropout_rate, |
|
activation, |
|
) |
|
elif positionwise_layer_type == "conv1d": |
|
positionwise_layer = MultiLayeredConv1d |
|
positionwise_layer_args = ( |
|
attention_dim, |
|
linear_units, |
|
positionwise_conv_kernel_size, |
|
dropout_rate, |
|
) |
|
elif positionwise_layer_type == "conv1d-linear": |
|
positionwise_layer = Conv1dLinear |
|
positionwise_layer_args = ( |
|
attention_dim, |
|
linear_units, |
|
positionwise_conv_kernel_size, |
|
dropout_rate, |
|
) |
|
else: |
|
raise NotImplementedError("Support only linear or conv1d.") |
|
|
|
|
|
convolution_layer = ConvolutionModule |
|
convolution_layer_args = (attention_dim, cnn_module_kernel, activation) |
|
|
|
self.encoders = repeat( |
|
num_blocks, |
|
lambda lnum: EncoderLayer( |
|
attention_dim, |
|
encoder_selfattn_layer(*encoder_selfattn_layer_args), |
|
positionwise_layer(*positionwise_layer_args), |
|
positionwise_layer(*positionwise_layer_args) if macaron_style else None, |
|
convolution_layer(*convolution_layer_args) if use_cnn_module else None, |
|
dropout_rate, |
|
normalize_before, |
|
concat_after, |
|
), |
|
) |
|
if self.normalize_before: |
|
self.after_norm = LayerNorm(attention_dim) |
|
|
|
def forward(self, xs, masks): |
|
"""Encode input sequence. |
|
|
|
Args: |
|
xs (torch.Tensor): Input tensor (#batch, time, idim). |
|
masks (torch.Tensor): Mask tensor (#batch, time). |
|
|
|
Returns: |
|
torch.Tensor: Output tensor (#batch, time, attention_dim). |
|
torch.Tensor: Mask tensor (#batch, time). |
|
|
|
""" |
|
if isinstance(self.embed, (Conv2dSubsampling, VGG2L)): |
|
xs, masks = self.embed(xs, masks) |
|
else: |
|
xs = self.embed(xs) |
|
|
|
xs, masks = self.encoders(xs, masks) |
|
if isinstance(xs, tuple): |
|
xs = xs[0] |
|
|
|
if self.normalize_before: |
|
xs = self.after_norm(xs) |
|
return xs, masks |
|
|