tobiasc's picture
Initial commit
ad16788
# Copyright 2019 Kyoto University (Hirofumi Inaguma)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""RNN sequence-to-sequence speech translation model (pytorch)."""
import argparse
import copy
import logging
import math
import os
import editdistance
import nltk
import chainer
import numpy as np
import six
import torch
from itertools import groupby
from chainer import reporter
from espnet.nets.e2e_asr_common import label_smoothing_dist
from espnet.nets.pytorch_backend.ctc import CTC
from espnet.nets.pytorch_backend.initialization import lecun_normal_init_parameters
from espnet.nets.pytorch_backend.initialization import set_forget_bias_to_one
from espnet.nets.pytorch_backend.nets_utils import get_subsample
from espnet.nets.pytorch_backend.nets_utils import pad_list
from espnet.nets.pytorch_backend.nets_utils import to_device
from espnet.nets.pytorch_backend.nets_utils import to_torch_tensor
from espnet.nets.pytorch_backend.rnn.argument import (
add_arguments_rnn_encoder_common, # noqa: H301
add_arguments_rnn_decoder_common, # noqa: H301
add_arguments_rnn_attention_common, # noqa: H301
)
from espnet.nets.pytorch_backend.rnn.attentions import att_for
from espnet.nets.pytorch_backend.rnn.decoders import decoder_for
from espnet.nets.pytorch_backend.rnn.encoders import encoder_for
from espnet.nets.st_interface import STInterface
from espnet.utils.fill_missing_args import fill_missing_args
CTC_LOSS_THRESHOLD = 10000
class Reporter(chainer.Chain):
"""A chainer reporter wrapper."""
def report(
self,
loss_asr,
loss_mt,
loss_st,
acc_asr,
acc_mt,
acc,
cer_ctc,
cer,
wer,
bleu,
mtl_loss,
):
"""Report at every step."""
reporter.report({"loss_asr": loss_asr}, self)
reporter.report({"loss_mt": loss_mt}, self)
reporter.report({"loss_st": loss_st}, self)
reporter.report({"acc_asr": acc_asr}, self)
reporter.report({"acc_mt": acc_mt}, self)
reporter.report({"acc": acc}, self)
reporter.report({"cer_ctc": cer_ctc}, self)
reporter.report({"cer": cer}, self)
reporter.report({"wer": wer}, self)
reporter.report({"bleu": bleu}, self)
logging.info("mtl loss:" + str(mtl_loss))
reporter.report({"loss": mtl_loss}, self)
class E2E(STInterface, torch.nn.Module):
"""E2E module.
:param int idim: dimension of inputs
:param int odim: dimension of outputs
:param Namespace args: argument Namespace containing options
"""
@staticmethod
def add_arguments(parser):
"""Add arguments."""
E2E.encoder_add_arguments(parser)
E2E.attention_add_arguments(parser)
E2E.decoder_add_arguments(parser)
return parser
@staticmethod
def encoder_add_arguments(parser):
"""Add arguments for the encoder."""
group = parser.add_argument_group("E2E encoder setting")
group = add_arguments_rnn_encoder_common(group)
return parser
@staticmethod
def attention_add_arguments(parser):
"""Add arguments for the attention."""
group = parser.add_argument_group("E2E attention setting")
group = add_arguments_rnn_attention_common(group)
return parser
@staticmethod
def decoder_add_arguments(parser):
"""Add arguments for the decoder."""
group = parser.add_argument_group("E2E decoder setting")
group = add_arguments_rnn_decoder_common(group)
return parser
def get_total_subsampling_factor(self):
"""Get total subsampling factor."""
return self.enc.conv_subsampling_factor * int(np.prod(self.subsample))
def __init__(self, idim, odim, args):
"""Construct an E2E object.
:param int idim: dimension of inputs
:param int odim: dimension of outputs
:param Namespace args: argument Namespace containing options
"""
super(E2E, self).__init__()
torch.nn.Module.__init__(self)
# fill missing arguments for compatibility
args = fill_missing_args(args, self.add_arguments)
self.asr_weight = args.asr_weight
self.mt_weight = args.mt_weight
self.mtlalpha = args.mtlalpha
assert 0.0 <= self.asr_weight < 1.0, "asr_weight should be [0.0, 1.0)"
assert 0.0 <= self.mt_weight < 1.0, "mt_weight should be [0.0, 1.0)"
assert 0.0 <= self.mtlalpha <= 1.0, "mtlalpha should be [0.0, 1.0]"
self.etype = args.etype
self.verbose = args.verbose
# NOTE: for self.build method
args.char_list = getattr(args, "char_list", None)
self.char_list = args.char_list
self.outdir = args.outdir
self.space = args.sym_space
self.blank = args.sym_blank
self.reporter = Reporter()
# below means the last number becomes eos/sos ID
# note that sos/eos IDs are identical
self.sos = odim - 1
self.eos = odim - 1
self.pad = 0
# NOTE: we reserve index:0 for <pad> although this is reserved for a blank class
# in ASR. However, blank labels are not used in MT.
# To keep the vocabulary size,
# we use index:0 for padding instead of adding one more class.
# subsample info
self.subsample = get_subsample(args, mode="st", arch="rnn")
# label smoothing info
if args.lsm_type and os.path.isfile(args.train_json):
logging.info("Use label smoothing with " + args.lsm_type)
labeldist = label_smoothing_dist(
odim, args.lsm_type, transcript=args.train_json
)
else:
labeldist = None
# multilingual related
self.multilingual = getattr(args, "multilingual", False)
self.replace_sos = getattr(args, "replace_sos", False)
# encoder
self.enc = encoder_for(args, idim, self.subsample)
# attention (ST)
self.att = att_for(args)
# decoder (ST)
self.dec = decoder_for(args, odim, self.sos, self.eos, self.att, labeldist)
# submodule for ASR task
self.ctc = None
self.att_asr = None
self.dec_asr = None
if self.asr_weight > 0:
if self.mtlalpha > 0.0:
self.ctc = CTC(
odim,
args.eprojs,
args.dropout_rate,
ctc_type=args.ctc_type,
reduce=True,
)
if self.mtlalpha < 1.0:
# attention (asr)
self.att_asr = att_for(args)
# decoder (asr)
args_asr = copy.deepcopy(args)
args_asr.atype = "location" # TODO(hirofumi0810): make this option
self.dec_asr = decoder_for(
args_asr, odim, self.sos, self.eos, self.att_asr, labeldist
)
# submodule for MT task
if self.mt_weight > 0:
self.embed_mt = torch.nn.Embedding(odim, args.eunits, padding_idx=self.pad)
self.dropout_mt = torch.nn.Dropout(p=args.dropout_rate)
self.enc_mt = encoder_for(
args, args.eunits, subsample=np.ones(args.elayers + 1, dtype=np.int)
)
# weight initialization
self.init_like_chainer()
# options for beam search
if self.asr_weight > 0 and args.report_cer or args.report_wer:
recog_args = {
"beam_size": args.beam_size,
"penalty": args.penalty,
"ctc_weight": args.ctc_weight,
"maxlenratio": args.maxlenratio,
"minlenratio": args.minlenratio,
"lm_weight": args.lm_weight,
"rnnlm": args.rnnlm,
"nbest": args.nbest,
"space": args.sym_space,
"blank": args.sym_blank,
"tgt_lang": False,
}
self.recog_args = argparse.Namespace(**recog_args)
self.report_cer = args.report_cer
self.report_wer = args.report_wer
else:
self.report_cer = False
self.report_wer = False
if args.report_bleu:
trans_args = {
"beam_size": args.beam_size,
"penalty": args.penalty,
"ctc_weight": 0,
"maxlenratio": args.maxlenratio,
"minlenratio": args.minlenratio,
"lm_weight": args.lm_weight,
"rnnlm": args.rnnlm,
"nbest": args.nbest,
"space": args.sym_space,
"blank": args.sym_blank,
"tgt_lang": False,
}
self.trans_args = argparse.Namespace(**trans_args)
self.report_bleu = args.report_bleu
else:
self.report_bleu = False
self.rnnlm = None
self.logzero = -10000000000.0
self.loss = None
self.acc = None
def init_like_chainer(self):
"""Initialize weight like chainer.
chainer basically uses LeCun way: W ~ Normal(0, fan_in ** -0.5), b = 0
pytorch basically uses W, b ~ Uniform(-fan_in**-0.5, fan_in**-0.5)
however, there are two exceptions as far as I know.
- EmbedID.W ~ Normal(0, 1)
- LSTM.upward.b[forget_gate_range] = 1 (but not used in NStepLSTM)
"""
lecun_normal_init_parameters(self)
# exceptions
# embed weight ~ Normal(0, 1)
self.dec.embed.weight.data.normal_(0, 1)
# forget-bias = 1.0
# https://discuss.pytorch.org/t/set-forget-gate-bias-of-lstm/1745
for i in six.moves.range(len(self.dec.decoder)):
set_forget_bias_to_one(self.dec.decoder[i].bias_ih)
def forward(self, xs_pad, ilens, ys_pad, ys_pad_src):
"""E2E forward.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
:return: loss value
:rtype: torch.Tensor
"""
# 0. Extract target language ID
if self.multilingual:
tgt_lang_ids = ys_pad[:, 0:1]
ys_pad = ys_pad[:, 1:] # remove target language ID in the beggining
else:
tgt_lang_ids = None
# 1. Encoder
hs_pad, hlens, _ = self.enc(xs_pad, ilens)
# 2. ST attention loss
self.loss_st, self.acc, _ = self.dec(
hs_pad, hlens, ys_pad, lang_ids=tgt_lang_ids
)
# 3. ASR loss
(
self.loss_asr_att,
acc_asr,
self.loss_asr_ctc,
cer_ctc,
cer,
wer,
) = self.forward_asr(hs_pad, hlens, ys_pad_src)
# 4. MT attention loss
self.loss_mt, acc_mt = self.forward_mt(ys_pad, ys_pad_src)
# 5. Compute BLEU
if self.training or not self.report_bleu:
self.bleu = 0.0
else:
lpz = None
nbest_hyps = self.dec.recognize_beam_batch(
hs_pad,
torch.tensor(hlens),
lpz,
self.trans_args,
self.char_list,
self.rnnlm,
lang_ids=tgt_lang_ids.squeeze(1).tolist()
if self.multilingual
else None,
)
# remove <sos> and <eos>
list_of_refs = []
hyps = []
y_hats = [nbest_hyp[0]["yseq"][1:-1] for nbest_hyp in nbest_hyps]
for i, y_hat in enumerate(y_hats):
y_true = ys_pad[i]
seq_hat = [self.char_list[int(idx)] for idx in y_hat if int(idx) != -1]
seq_true = [
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
]
seq_hat_text = "".join(seq_hat).replace(self.trans_args.space, " ")
seq_hat_text = seq_hat_text.replace(self.trans_args.blank, "")
seq_true_text = "".join(seq_true).replace(self.trans_args.space, " ")
hyps += [seq_hat_text.split(" ")]
list_of_refs += [[seq_true_text.split(" ")]]
self.bleu = nltk.bleu_score.corpus_bleu(list_of_refs, hyps) * 100
asr_ctc_weight = self.mtlalpha
self.loss_asr = (
asr_ctc_weight * self.loss_asr_ctc
+ (1 - asr_ctc_weight) * self.loss_asr_att
)
self.loss = (
(1 - self.asr_weight - self.mt_weight) * self.loss_st
+ self.asr_weight * self.loss_asr
+ self.mt_weight * self.loss_mt
)
loss_st_data = float(self.loss_st)
loss_asr_data = float(self.loss_asr)
loss_mt_data = float(self.loss_mt)
loss_data = float(self.loss)
if loss_data < CTC_LOSS_THRESHOLD and not math.isnan(loss_data):
self.reporter.report(
loss_asr_data,
loss_mt_data,
loss_st_data,
acc_asr,
acc_mt,
self.acc,
cer_ctc,
cer,
wer,
self.bleu,
loss_data,
)
else:
logging.warning("loss (=%f) is not correct", loss_data)
return self.loss
def forward_asr(self, hs_pad, hlens, ys_pad):
"""Forward pass in the auxiliary ASR task.
:param torch.Tensor hs_pad: batch of padded source sequences (B, Tmax, idim)
:param torch.Tensor hlens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad: batch of padded target sequences (B, Lmax)
:return: ASR attention loss value
:rtype: torch.Tensor
:return: accuracy in ASR attention decoder
:rtype: float
:return: ASR CTC loss value
:rtype: torch.Tensor
:return: character error rate from CTC prediction
:rtype: float
:return: character error rate from attetion decoder prediction
:rtype: float
:return: word error rate from attetion decoder prediction
:rtype: float
"""
loss_att, loss_ctc = 0.0, 0.0
acc = None
cer, wer = None, None
cer_ctc = None
if self.asr_weight == 0:
return loss_att, acc, loss_ctc, cer_ctc, cer, wer
# attention
if self.mtlalpha < 1:
loss_asr, acc_asr, _ = self.dec_asr(hs_pad, hlens, ys_pad)
# Compute wer and cer
if not self.training and (self.report_cer or self.report_wer):
if self.mtlalpha > 0 and self.recog_args.ctc_weight > 0.0:
lpz = self.ctc.log_softmax(hs_pad).data
else:
lpz = None
word_eds, word_ref_lens, char_eds, char_ref_lens = [], [], [], []
nbest_hyps_asr = self.dec_asr.recognize_beam_batch(
hs_pad,
torch.tensor(hlens),
lpz,
self.recog_args,
self.char_list,
self.rnnlm,
)
# remove <sos> and <eos>
y_hats = [nbest_hyp[0]["yseq"][1:-1] for nbest_hyp in nbest_hyps_asr]
for i, y_hat in enumerate(y_hats):
y_true = ys_pad[i]
seq_hat = [
self.char_list[int(idx)] for idx in y_hat if int(idx) != -1
]
seq_true = [
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
]
seq_hat_text = "".join(seq_hat).replace(self.recog_args.space, " ")
seq_hat_text = seq_hat_text.replace(self.recog_args.blank, "")
seq_true_text = "".join(seq_true).replace(
self.recog_args.space, " "
)
hyp_words = seq_hat_text.split()
ref_words = seq_true_text.split()
word_eds.append(editdistance.eval(hyp_words, ref_words))
word_ref_lens.append(len(ref_words))
hyp_chars = seq_hat_text.replace(" ", "")
ref_chars = seq_true_text.replace(" ", "")
char_eds.append(editdistance.eval(hyp_chars, ref_chars))
char_ref_lens.append(len(ref_chars))
wer = (
0.0
if not self.report_wer
else float(sum(word_eds)) / sum(word_ref_lens)
)
cer = (
0.0
if not self.report_cer
else float(sum(char_eds)) / sum(char_ref_lens)
)
# CTC
if self.mtlalpha > 0:
loss_ctc = self.ctc(hs_pad, hlens, ys_pad)
# Compute cer with CTC prediction
if self.char_list is not None:
cers = []
y_hats = self.ctc.argmax(hs_pad).data
for i, y in enumerate(y_hats):
y_hat = [x[0] for x in groupby(y)]
y_true = ys_pad[i]
seq_hat = [
self.char_list[int(idx)] for idx in y_hat if int(idx) != -1
]
seq_true = [
self.char_list[int(idx)] for idx in y_true if int(idx) != -1
]
seq_hat_text = "".join(seq_hat).replace(self.space, " ")
seq_hat_text = seq_hat_text.replace(self.blank, "")
seq_true_text = "".join(seq_true).replace(self.space, " ")
hyp_chars = seq_hat_text.replace(" ", "")
ref_chars = seq_true_text.replace(" ", "")
if len(ref_chars) > 0:
cers.append(
editdistance.eval(hyp_chars, ref_chars) / len(ref_chars)
)
cer_ctc = sum(cers) / len(cers) if cers else None
return loss_att, acc, loss_ctc, cer_ctc, cer, wer
def forward_mt(self, xs_pad, ys_pad):
"""Forward pass in the auxiliary MT task.
:param torch.Tensor xs_pad: batch of padded source sequences (B, Tmax, idim)
:param torch.Tensor ys_pad: batch of padded target sequences (B, Lmax)
:return: MT loss value
:rtype: torch.Tensor
:return: accuracy in MT decoder
:rtype: float
"""
loss = 0.0
acc = 0.0
if self.mt_weight == 0:
return loss, acc
ilens = torch.sum(xs_pad != -1, dim=1).cpu().numpy()
# NOTE: xs_pad is padded with -1
ys_src = [y[y != -1] for y in xs_pad] # parse padded ys_src
xs_zero_pad = pad_list(ys_src, self.pad) # re-pad with zero
hs_pad, hlens, _ = self.enc_mt(
self.dropout_mt(self.embed_mt(xs_zero_pad)), ilens
)
loss, acc, _ = self.dec(hs_pad, hlens, ys_pad)
return loss, acc
def scorers(self):
"""Scorers."""
return dict(decoder=self.dec)
def encode(self, x):
"""Encode acoustic features.
:param ndarray x: input acoustic feature (T, D)
:return: encoder outputs
:rtype: torch.Tensor
"""
self.eval()
ilens = [x.shape[0]]
# subsample frame
x = x[:: self.subsample[0], :]
p = next(self.parameters())
h = torch.as_tensor(x, device=p.device, dtype=p.dtype)
# make a utt list (1) to use the same interface for encoder
hs = h.contiguous().unsqueeze(0)
# 1. encoder
hs, _, _ = self.enc(hs, ilens)
return hs.squeeze(0)
def translate(self, x, trans_args, char_list, rnnlm=None):
"""E2E beam search.
:param ndarray x: input acoustic feature (T, D)
:param Namespace trans_args: argument Namespace containing options
:param list char_list: list of characters
:param torch.nn.Module rnnlm: language model module
:return: N-best decoding results
:rtype: list
"""
logging.info("input lengths: " + str(x.shape[0]))
hs = self.encode(x).unsqueeze(0)
logging.info("encoder output lengths: " + str(hs.size(1)))
# 2. Decoder
# decode the first utterance
y = self.dec.recognize_beam(hs[0], None, trans_args, char_list, rnnlm)
return y
def translate_batch(self, xs, trans_args, char_list, rnnlm=None):
"""E2E batch beam search.
:param list xs: list of input acoustic feature arrays [(T_1, D), (T_2, D), ...]
:param Namespace trans_args: argument Namespace containing options
:param list char_list: list of characters
:param torch.nn.Module rnnlm: language model module
:return: N-best decoding results
:rtype: list
"""
prev = self.training
self.eval()
ilens = np.fromiter((xx.shape[0] for xx in xs), dtype=np.int64)
# subsample frame
xs = [xx[:: self.subsample[0], :] for xx in xs]
xs = [to_device(self, to_torch_tensor(xx).float()) for xx in xs]
xs_pad = pad_list(xs, 0.0)
# 1. Encoder
hs_pad, hlens, _ = self.enc(xs_pad, ilens)
# 2. Decoder
hlens = torch.tensor(list(map(int, hlens))) # make sure hlens is tensor
y = self.dec.recognize_beam_batch(
hs_pad, hlens, None, trans_args, char_list, rnnlm
)
if prev:
self.train()
return y
def calculate_all_attentions(self, xs_pad, ilens, ys_pad, ys_pad_src):
"""E2E attention calculation.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
:param torch.Tensor ys_pad_src:
batch of padded token id sequence tensor (B, Lmax)
:return: attention weights with the following shape,
1) multi-head case => attention weights (B, H, Lmax, Tmax),
2) other case => attention weights (B, Lmax, Tmax).
:rtype: float ndarray
"""
self.eval()
with torch.no_grad():
# 1. Encoder
if self.multilingual:
tgt_lang_ids = ys_pad[:, 0:1]
ys_pad = ys_pad[:, 1:] # remove target language ID in the beggining
else:
tgt_lang_ids = None
hpad, hlens, _ = self.enc(xs_pad, ilens)
# 2. Decoder
att_ws = self.dec.calculate_all_attentions(
hpad, hlens, ys_pad, lang_ids=tgt_lang_ids
)
self.train()
return att_ws
def calculate_all_ctc_probs(self, xs_pad, ilens, ys_pad, ys_pad_src):
"""E2E CTC probability calculation.
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor ys_pad: batch of padded token id sequence tensor (B, Lmax)
:param torch.Tensor
ys_pad_src: batch of padded token id sequence tensor (B, Lmax)
:return: CTC probability (B, Tmax, vocab)
:rtype: float ndarray
"""
probs = None
if self.asr_weight == 0 or self.mtlalpha == 0:
return probs
self.eval()
with torch.no_grad():
# 1. Encoder
hpad, hlens, _ = self.enc(xs_pad, ilens)
# 2. CTC probs
probs = self.ctc.softmax(hpad).cpu().numpy()
self.train()
return probs
def subsample_frames(self, x):
"""Subsample speeh frames in the encoder."""
# subsample frame
x = x[:: self.subsample[0], :]
ilen = [x.shape[0]]
h = to_device(self, torch.from_numpy(np.array(x, dtype=np.float32)))
h.contiguous()
return h, ilen