|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Token masking module for Masked LM.""" |
|
|
|
import numpy |
|
|
|
|
|
def mask_uniform(ys_pad, mask_token, eos, ignore_id): |
|
"""Replace random tokens with <mask> label and add <eos> label. |
|
|
|
The number of <mask> is chosen from a uniform distribution |
|
between one and the target sequence's length. |
|
:param torch.Tensor ys_pad: batch of padded target sequences (B, Lmax) |
|
:param int mask_token: index of <mask> |
|
:param int eos: index of <eos> |
|
:param int ignore_id: index of padding |
|
:return: padded tensor (B, Lmax) |
|
:rtype: torch.Tensor |
|
:return: padded tensor (B, Lmax) |
|
:rtype: torch.Tensor |
|
""" |
|
from espnet.nets.pytorch_backend.nets_utils import pad_list |
|
|
|
ys = [y[y != ignore_id] for y in ys_pad] |
|
ys_out = [y.new(y.size()).fill_(ignore_id) for y in ys] |
|
ys_in = [y.clone() for y in ys] |
|
for i in range(len(ys)): |
|
num_samples = numpy.random.randint(1, len(ys[i]) + 1) |
|
idx = numpy.random.choice(len(ys[i]), num_samples) |
|
|
|
ys_in[i][idx] = mask_token |
|
ys_out[i][idx] = ys[i][idx] |
|
|
|
return pad_list(ys_in, eos), pad_list(ys_out, ignore_id) |
|
|