|
|
|
|
|
|
|
|
|
|
|
|
|
"""Decoder self-attention layer definition.""" |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from espnet.nets.pytorch_backend.transformer.layer_norm import LayerNorm |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
"""Single decoder layer module. |
|
|
|
Args: |
|
size (int): Input dimension. |
|
self_attn (torch.nn.Module): Self-attention module instance. |
|
`MultiHeadedAttention` instance can be used as the argument. |
|
src_attn (torch.nn.Module): Self-attention module instance. |
|
`MultiHeadedAttention` instance can be used as the argument. |
|
feed_forward (torch.nn.Module): Feed-forward module instance. |
|
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance |
|
can be used as the argument. |
|
dropout_rate (float): Dropout rate. |
|
normalize_before (bool): Whether to use layer_norm before the first block. |
|
concat_after (bool): Whether to concat attention layer's input and output. |
|
if True, additional linear will be applied. |
|
i.e. x -> x + linear(concat(x, att(x))) |
|
if False, no additional linear will be applied. i.e. x -> x + att(x) |
|
|
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
size, |
|
self_attn, |
|
src_attn, |
|
feed_forward, |
|
dropout_rate, |
|
normalize_before=True, |
|
concat_after=False, |
|
): |
|
"""Construct an DecoderLayer object.""" |
|
super(DecoderLayer, self).__init__() |
|
self.size = size |
|
self.self_attn = self_attn |
|
self.src_attn = src_attn |
|
self.feed_forward = feed_forward |
|
self.norm1 = LayerNorm(size) |
|
self.norm2 = LayerNorm(size) |
|
self.norm3 = LayerNorm(size) |
|
self.dropout = nn.Dropout(dropout_rate) |
|
self.normalize_before = normalize_before |
|
self.concat_after = concat_after |
|
if self.concat_after: |
|
self.concat_linear1 = nn.Linear(size + size, size) |
|
self.concat_linear2 = nn.Linear(size + size, size) |
|
|
|
def forward(self, tgt, tgt_mask, memory, memory_mask, cache=None): |
|
"""Compute decoded features. |
|
|
|
Args: |
|
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size). |
|
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out). |
|
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size). |
|
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in). |
|
cache (List[torch.Tensor]): List of cached tensors. |
|
Each tensor shape should be (#batch, maxlen_out - 1, size). |
|
|
|
Returns: |
|
torch.Tensor: Output tensor(#batch, maxlen_out, size). |
|
torch.Tensor: Mask for output tensor (#batch, maxlen_out). |
|
torch.Tensor: Encoded memory (#batch, maxlen_in, size). |
|
torch.Tensor: Encoded memory mask (#batch, maxlen_in). |
|
|
|
""" |
|
residual = tgt |
|
if self.normalize_before: |
|
tgt = self.norm1(tgt) |
|
|
|
if cache is None: |
|
tgt_q = tgt |
|
tgt_q_mask = tgt_mask |
|
else: |
|
|
|
assert cache.shape == ( |
|
tgt.shape[0], |
|
tgt.shape[1] - 1, |
|
self.size, |
|
), f"{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}" |
|
tgt_q = tgt[:, -1:, :] |
|
residual = residual[:, -1:, :] |
|
tgt_q_mask = None |
|
if tgt_mask is not None: |
|
tgt_q_mask = tgt_mask[:, -1:, :] |
|
|
|
if self.concat_after: |
|
tgt_concat = torch.cat( |
|
(tgt_q, self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)), dim=-1 |
|
) |
|
x = residual + self.concat_linear1(tgt_concat) |
|
else: |
|
x = residual + self.dropout(self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)) |
|
if not self.normalize_before: |
|
x = self.norm1(x) |
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm2(x) |
|
if self.concat_after: |
|
x_concat = torch.cat( |
|
(x, self.src_attn(x, memory, memory, memory_mask)), dim=-1 |
|
) |
|
x = residual + self.concat_linear2(x_concat) |
|
else: |
|
x = residual + self.dropout(self.src_attn(x, memory, memory, memory_mask)) |
|
if not self.normalize_before: |
|
x = self.norm2(x) |
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm3(x) |
|
x = residual + self.dropout(self.feed_forward(x)) |
|
if not self.normalize_before: |
|
x = self.norm3(x) |
|
|
|
if cache is not None: |
|
x = torch.cat([cache, x], dim=1) |
|
|
|
return x, tgt_mask, memory, memory_mask |
|
|