|
import copy |
|
from typing import Optional |
|
from typing import Tuple |
|
from typing import Union |
|
|
|
import humanfriendly |
|
import numpy as np |
|
import torch |
|
from torch_complex.tensor import ComplexTensor |
|
from typeguard import check_argument_types |
|
|
|
from espnet.nets.pytorch_backend.frontends.frontend import Frontend |
|
from espnet2.asr.frontend.abs_frontend import AbsFrontend |
|
from espnet2.layers.log_mel import LogMel |
|
from espnet2.layers.stft import Stft |
|
from espnet2.utils.get_default_kwargs import get_default_kwargs |
|
|
|
|
|
class DefaultFrontend(AbsFrontend): |
|
"""Conventional frontend structure for ASR. |
|
|
|
Stft -> WPE -> MVDR-Beamformer -> Power-spec -> Mel-Fbank -> CMVN |
|
""" |
|
|
|
def __init__( |
|
self, |
|
fs: Union[int, str] = 16000, |
|
n_fft: int = 512, |
|
win_length: int = None, |
|
hop_length: int = 128, |
|
window: Optional[str] = "hann", |
|
center: bool = True, |
|
normalized: bool = False, |
|
onesided: bool = True, |
|
n_mels: int = 80, |
|
fmin: int = None, |
|
fmax: int = None, |
|
htk: bool = False, |
|
frontend_conf: Optional[dict] = get_default_kwargs(Frontend), |
|
apply_stft: bool = True, |
|
): |
|
assert check_argument_types() |
|
super().__init__() |
|
if isinstance(fs, str): |
|
fs = humanfriendly.parse_size(fs) |
|
|
|
|
|
frontend_conf = copy.deepcopy(frontend_conf) |
|
|
|
if apply_stft: |
|
self.stft = Stft( |
|
n_fft=n_fft, |
|
win_length=win_length, |
|
hop_length=hop_length, |
|
center=center, |
|
window=window, |
|
normalized=normalized, |
|
onesided=onesided, |
|
) |
|
else: |
|
self.stft = None |
|
self.apply_stft = apply_stft |
|
|
|
if frontend_conf is not None: |
|
self.frontend = Frontend(idim=n_fft // 2 + 1, **frontend_conf) |
|
else: |
|
self.frontend = None |
|
|
|
self.logmel = LogMel( |
|
fs=fs, |
|
n_fft=n_fft, |
|
n_mels=n_mels, |
|
fmin=fmin, |
|
fmax=fmax, |
|
htk=htk, |
|
) |
|
self.n_mels = n_mels |
|
|
|
def output_size(self) -> int: |
|
return self.n_mels |
|
|
|
def forward( |
|
self, input: torch.Tensor, input_lengths: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
if self.stft is not None: |
|
input_stft, feats_lens = self._compute_stft(input, input_lengths) |
|
else: |
|
input_stft = ComplexTensor(input[..., 0], input[..., 1]) |
|
feats_lens = input_lengths |
|
|
|
if self.frontend is not None: |
|
assert isinstance(input_stft, ComplexTensor), type(input_stft) |
|
|
|
input_stft, _, mask = self.frontend(input_stft, feats_lens) |
|
|
|
|
|
if input_stft.dim() == 4: |
|
|
|
if self.training: |
|
|
|
ch = np.random.randint(input_stft.size(2)) |
|
input_stft = input_stft[:, :, ch, :] |
|
else: |
|
|
|
input_stft = input_stft[:, :, 0, :] |
|
|
|
|
|
|
|
input_power = input_stft.real ** 2 + input_stft.imag ** 2 |
|
|
|
|
|
|
|
|
|
input_feats, _ = self.logmel(input_power, feats_lens) |
|
|
|
return input_feats, feats_lens |
|
|
|
def _compute_stft( |
|
self, input: torch.Tensor, input_lengths: torch.Tensor |
|
) -> torch.Tensor: |
|
input_stft, feats_lens = self.stft(input, input_lengths) |
|
|
|
assert input_stft.dim() >= 4, input_stft.shape |
|
|
|
assert input_stft.shape[-1] == 2, input_stft.shape |
|
|
|
|
|
|
|
input_stft = ComplexTensor(input_stft[..., 0], input_stft[..., 1]) |
|
return input_stft, feats_lens |
|
|