|
from typing import Any |
|
from typing import Dict |
|
from typing import Optional |
|
from typing import Tuple |
|
from typing import Union |
|
|
|
import humanfriendly |
|
import torch |
|
from typeguard import check_argument_types |
|
|
|
from espnet2.layers.log_mel import LogMel |
|
from espnet2.layers.stft import Stft |
|
from espnet2.tts.feats_extract.abs_feats_extract import AbsFeatsExtract |
|
|
|
|
|
class LogMelFbank(AbsFeatsExtract): |
|
"""Conventional frontend structure for ASR |
|
|
|
Stft -> amplitude-spec -> Log-Mel-Fbank |
|
""" |
|
|
|
def __init__( |
|
self, |
|
fs: Union[int, str] = 16000, |
|
n_fft: int = 1024, |
|
win_length: int = None, |
|
hop_length: int = 256, |
|
window: Optional[str] = "hann", |
|
center: bool = True, |
|
normalized: bool = False, |
|
onesided: bool = True, |
|
n_mels: int = 80, |
|
fmin: Optional[int] = 80, |
|
fmax: Optional[int] = 7600, |
|
htk: bool = False, |
|
): |
|
assert check_argument_types() |
|
super().__init__() |
|
if isinstance(fs, str): |
|
fs = humanfriendly.parse_size(fs) |
|
|
|
self.fs = fs |
|
self.n_mels = n_mels |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
self.window = window |
|
self.fmin = fmin |
|
self.fmax = fmax |
|
|
|
self.stft = Stft( |
|
n_fft=n_fft, |
|
win_length=win_length, |
|
hop_length=hop_length, |
|
window=window, |
|
center=center, |
|
normalized=normalized, |
|
onesided=onesided, |
|
) |
|
|
|
self.logmel = LogMel( |
|
fs=fs, |
|
n_fft=n_fft, |
|
n_mels=n_mels, |
|
fmin=fmin, |
|
fmax=fmax, |
|
htk=htk, |
|
log_base=10.0, |
|
) |
|
|
|
def output_size(self) -> int: |
|
return self.n_mels |
|
|
|
def get_parameters(self) -> Dict[str, Any]: |
|
"""Return the parameters required by Vocoder""" |
|
return dict( |
|
fs=self.fs, |
|
n_fft=self.n_fft, |
|
n_shift=self.hop_length, |
|
window=self.window, |
|
n_mels=self.n_mels, |
|
win_length=self.win_length, |
|
fmin=self.fmin, |
|
fmax=self.fmax, |
|
) |
|
|
|
def forward( |
|
self, input: torch.Tensor, input_lengths: torch.Tensor = None |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
input_stft, feats_lens = self.stft(input, input_lengths) |
|
|
|
assert input_stft.dim() >= 4, input_stft.shape |
|
|
|
assert input_stft.shape[-1] == 2, input_stft.shape |
|
|
|
|
|
|
|
|
|
|
|
|
|
input_power = input_stft[..., 0] ** 2 + input_stft[..., 1] ** 2 |
|
input_amp = torch.sqrt(torch.clamp(input_power, min=1.0e-10)) |
|
input_feats, _ = self.logmel(input_amp, feats_lens) |
|
return input_feats, feats_lens |
|
|