#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 Tomoki Hayashi # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Length regulator related modules.""" import logging from distutils.version import LooseVersion import torch from espnet.nets.pytorch_backend.nets_utils import pad_list is_torch_1_1_plus = LooseVersion(torch.__version__) >= LooseVersion("1.1") class LengthRegulator(torch.nn.Module): """Length regulator module for feed-forward Transformer. This is a module of length regulator described in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. The length regulator expands char or phoneme-level embedding features to frame-level by repeating each feature based on the corresponding predicted durations. .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: https://arxiv.org/pdf/1905.09263.pdf """ def __init__(self, pad_value=0.0): """Initilize length regulator module. Args: pad_value (float, optional): Value used for padding. """ super(LengthRegulator, self).__init__() self.pad_value = pad_value if is_torch_1_1_plus: self.repeat_fn = self._repeat_one_sequence else: self.repeat_fn = self._legacy_repeat_one_sequence def forward(self, xs, ds, alpha=1.0): """Calculate forward propagation. Args: xs (Tensor): Batch of sequences of char or phoneme embeddings (B, Tmax, D). ds (LongTensor): Batch of durations of each frame (B, T). alpha (float, optional): Alpha value to control speed of speech. Returns: Tensor: replicated input tensor based on durations (B, T*, D). """ if alpha != 1.0: assert alpha > 0 ds = torch.round(ds.float() * alpha).long() if ds.sum() == 0: logging.warning( "predicted durations includes all 0 sequences. " "fill the first element with 1." ) # NOTE(kan-bayashi): This case must not be happend in teacher forcing. # It will be happened in inference with a bad duration predictor. # So we do not need to care the padded sequence case here. ds[ds.sum(dim=1).eq(0)] = 1 return pad_list([self.repeat_fn(x, d) for x, d in zip(xs, ds)], self.pad_value) def _repeat_one_sequence(self, x, d): """Repeat each frame according to duration for torch 1.1+.""" return torch.repeat_interleave(x, d, dim=0) def _legacy_repeat_one_sequence(self, x, d): """Repeat each frame according to duration for torch 1.0. Examples: >>> x = torch.tensor([[1], [2], [3]]) tensor([[1], [2], [3]]) >>> d = torch.tensor([1, 2, 3]) tensor([1, 2, 3]) >>> self._repeat_one_sequence(x, d) tensor([[1], [2], [2], [3], [3], [3]]) """ return torch.cat( [x_.repeat(int(d_), 1) for x_, d_ in zip(x, d) if d_ != 0], dim=0 )