from abc import ABC from abc import abstractmethod import collections import copy import functools import logging import numbers import re from typing import Any from typing import Callable from typing import Collection from typing import Dict from typing import Mapping from typing import Tuple from typing import Union import h5py import humanfriendly import kaldiio import numpy as np import torch from torch.utils.data.dataset import Dataset from typeguard import check_argument_types from typeguard import check_return_type from espnet2.fileio.npy_scp import NpyScpReader from espnet2.fileio.rand_gen_dataset import FloatRandomGenerateDataset from espnet2.fileio.rand_gen_dataset import IntRandomGenerateDataset from espnet2.fileio.read_text import load_num_sequence_text from espnet2.fileio.read_text import read_2column_text from espnet2.fileio.rttm import RttmReader from espnet2.fileio.sound_scp import SoundScpReader from espnet2.utils.sized_dict import SizedDict class AdapterForSoundScpReader(collections.abc.Mapping): def __init__(self, loader, dtype=None): assert check_argument_types() self.loader = loader self.dtype = dtype self.rate = None def keys(self): return self.loader.keys() def __len__(self): return len(self.loader) def __iter__(self): return iter(self.loader) def __getitem__(self, key: str) -> np.ndarray: retval = self.loader[key] if isinstance(retval, tuple): assert len(retval) == 2, len(retval) if isinstance(retval[0], int) and isinstance(retval[1], np.ndarray): # sound scp case rate, array = retval elif isinstance(retval[0], int) and isinstance(retval[1], np.ndarray): # Extended ark format case array, rate = retval else: raise RuntimeError( f"Unexpected type: {type(retval[0])}, {type(retval[1])}" ) if self.rate is not None and self.rate != rate: raise RuntimeError( f"Sampling rates are mismatched: {self.rate} != {rate}" ) self.rate = rate # Multichannel wave fie # array: (NSample, Channel) or (Nsample) if self.dtype is not None: array = array.astype(self.dtype) else: # Normal ark case assert isinstance(retval, np.ndarray), type(retval) array = retval if self.dtype is not None: array = array.astype(self.dtype) assert isinstance(array, np.ndarray), type(array) return array class H5FileWrapper: def __init__(self, path: str): self.path = path self.h5_file = h5py.File(path, "r") def __repr__(self) -> str: return str(self.h5_file) def __len__(self) -> int: return len(self.h5_file) def __iter__(self): return iter(self.h5_file) def __getitem__(self, key) -> np.ndarray: value = self.h5_file[key] return value[()] def sound_loader(path, float_dtype=None): # The file is as follows: # utterance_id_A /some/where/a.wav # utterance_id_B /some/where/a.flac # NOTE(kamo): SoundScpReader doesn't support pipe-fashion # like Kaldi e.g. "cat a.wav |". # NOTE(kamo): The audio signal is normalized to [-1,1] range. loader = SoundScpReader(path, normalize=True, always_2d=False) # SoundScpReader.__getitem__() returns Tuple[int, ndarray], # but ndarray is desired, so Adapter class is inserted here return AdapterForSoundScpReader(loader, float_dtype) def kaldi_loader(path, float_dtype=None, max_cache_fd: int = 0): loader = kaldiio.load_scp(path, max_cache_fd=max_cache_fd) return AdapterForSoundScpReader(loader, float_dtype) def rand_int_loader(filepath, loader_type): # e.g. rand_int_3_10 try: low, high = map(int, loader_type[len("rand_int_") :].split("_")) except ValueError: raise RuntimeError(f"e.g rand_int_3_10: but got {loader_type}") return IntRandomGenerateDataset(filepath, low, high) DATA_TYPES = { "sound": dict( func=sound_loader, kwargs=["float_dtype"], help="Audio format types which supported by sndfile wav, flac, etc." "\n\n" " utterance_id_a a.wav\n" " utterance_id_b b.wav\n" " ...", ), "kaldi_ark": dict( func=kaldi_loader, kwargs=["max_cache_fd"], help="Kaldi-ark file type." "\n\n" " utterance_id_A /some/where/a.ark:123\n" " utterance_id_B /some/where/a.ark:456\n" " ...", ), "npy": dict( func=NpyScpReader, kwargs=[], help="Npy file format." "\n\n" " utterance_id_A /some/where/a.npy\n" " utterance_id_B /some/where/b.npy\n" " ...", ), "text_int": dict( func=functools.partial(load_num_sequence_text, loader_type="text_int"), kwargs=[], help="A text file in which is written a sequence of interger numbers " "separated by space." "\n\n" " utterance_id_A 12 0 1 3\n" " utterance_id_B 3 3 1\n" " ...", ), "csv_int": dict( func=functools.partial(load_num_sequence_text, loader_type="csv_int"), kwargs=[], help="A text file in which is written a sequence of interger numbers " "separated by comma." "\n\n" " utterance_id_A 100,80\n" " utterance_id_B 143,80\n" " ...", ), "text_float": dict( func=functools.partial(load_num_sequence_text, loader_type="text_float"), kwargs=[], help="A text file in which is written a sequence of float numbers " "separated by space." "\n\n" " utterance_id_A 12. 3.1 3.4 4.4\n" " utterance_id_B 3. 3.12 1.1\n" " ...", ), "csv_float": dict( func=functools.partial(load_num_sequence_text, loader_type="csv_float"), kwargs=[], help="A text file in which is written a sequence of float numbers " "separated by comma." "\n\n" " utterance_id_A 12.,3.1,3.4,4.4\n" " utterance_id_B 3.,3.12,1.1\n" " ...", ), "text": dict( func=read_2column_text, kwargs=[], help="Return text as is. The text must be converted to ndarray " "by 'preprocess'." "\n\n" " utterance_id_A hello world\n" " utterance_id_B foo bar\n" " ...", ), "hdf5": dict( func=H5FileWrapper, kwargs=[], help="A HDF5 file which contains arrays at the first level or the second level." " >>> f = h5py.File('file.h5')\n" " >>> array1 = f['utterance_id_A']\n" " >>> array2 = f['utterance_id_B']\n", ), "rand_float": dict( func=FloatRandomGenerateDataset, kwargs=[], help="Generate random float-ndarray which has the given shapes " "in the file." "\n\n" " utterance_id_A 3,4\n" " utterance_id_B 10,4\n" " ...", ), "rand_int_\\d+_\\d+": dict( func=rand_int_loader, kwargs=["loader_type"], help="e.g. 'rand_int_0_10'. Generate random int-ndarray which has the given " "shapes in the path. " "Give the lower and upper value by the file type. e.g. " "rand_int_0_10 -> Generate integers from 0 to 10." "\n\n" " utterance_id_A 3,4\n" " utterance_id_B 10,4\n" " ...", ), "rttm": dict( func=RttmReader, kwargs=[], help="rttm file loader, currently support for speaker diarization" "\n\n" " SPEAKER file1 1 0 1023 spk1 " " SPEAKER file1 2 4000 3023 spk2 " " SPEAKER file1 3 500 4023 spk1 " " END file1 4023 " " ...", ), } class AbsDataset(Dataset, ABC): @abstractmethod def has_name(self, name) -> bool: raise NotImplementedError @abstractmethod def names(self) -> Tuple[str, ...]: raise NotImplementedError @abstractmethod def __getitem__(self, uid) -> Tuple[Any, Dict[str, np.ndarray]]: raise NotImplementedError class ESPnetDataset(AbsDataset): """Pytorch Dataset class for ESPNet. Examples: >>> dataset = ESPnetDataset([('wav.scp', 'input', 'sound'), ... ('token_int', 'output', 'text_int')], ... ) ... uttid, data = dataset['uttid'] {'input': per_utt_array, 'output': per_utt_array} """ def __init__( self, path_name_type_list: Collection[Tuple[str, str, str]], preprocess: Callable[ [str, Dict[str, np.ndarray]], Dict[str, np.ndarray] ] = None, float_dtype: str = "float32", int_dtype: str = "long", max_cache_size: Union[float, int, str] = 0.0, max_cache_fd: int = 0, ): assert check_argument_types() if len(path_name_type_list) == 0: raise ValueError( '1 or more elements are required for "path_name_type_list"' ) path_name_type_list = copy.deepcopy(path_name_type_list) self.preprocess = preprocess self.float_dtype = float_dtype self.int_dtype = int_dtype self.max_cache_fd = max_cache_fd self.loader_dict = {} self.debug_info = {} for path, name, _type in path_name_type_list: if name in self.loader_dict: raise RuntimeError(f'"{name}" is duplicated for data-key') loader = self._build_loader(path, _type) self.loader_dict[name] = loader self.debug_info[name] = path, _type if len(self.loader_dict[name]) == 0: raise RuntimeError(f"{path} has no samples") # TODO(kamo): Should check consistency of each utt-keys? if isinstance(max_cache_size, str): max_cache_size = humanfriendly.parse_size(max_cache_size) self.max_cache_size = max_cache_size if max_cache_size > 0: self.cache = SizedDict(shared=True) else: self.cache = None def _build_loader( self, path: str, loader_type: str ) -> Mapping[str, Union[np.ndarray, torch.Tensor, str, numbers.Number]]: """Helper function to instantiate Loader. Args: path: The file path loader_type: loader_type. sound, npy, text_int, text_float, etc """ for key, dic in DATA_TYPES.items(): # e.g. loader_type="sound" # -> return DATA_TYPES["sound"]["func"](path) if re.match(key, loader_type): kwargs = {} for key2 in dic["kwargs"]: if key2 == "loader_type": kwargs["loader_type"] = loader_type elif key2 == "float_dtype": kwargs["float_dtype"] = self.float_dtype elif key2 == "int_dtype": kwargs["int_dtype"] = self.int_dtype elif key2 == "max_cache_fd": kwargs["max_cache_fd"] = self.max_cache_fd else: raise RuntimeError(f"Not implemented keyword argument: {key2}") func = dic["func"] try: return func(path, **kwargs) except Exception: if hasattr(func, "__name__"): name = func.__name__ else: name = str(func) logging.error(f"An error happend with {name}({path})") raise else: raise RuntimeError(f"Not supported: loader_type={loader_type}") def has_name(self, name) -> bool: return name in self.loader_dict def names(self) -> Tuple[str, ...]: return tuple(self.loader_dict) def __iter__(self): return iter(next(iter(self.loader_dict.values()))) def __repr__(self): _mes = self.__class__.__name__ _mes += "(" for name, (path, _type) in self.debug_info.items(): _mes += f'\n {name}: {{"path": "{path}", "type": "{_type}"}}' _mes += f"\n preprocess: {self.preprocess})" return _mes def __getitem__(self, uid: Union[str, int]) -> Tuple[str, Dict[str, np.ndarray]]: assert check_argument_types() # Change integer-id to string-id if isinstance(uid, int): d = next(iter(self.loader_dict.values())) uid = list(d)[uid] if self.cache is not None and uid in self.cache: data = self.cache[uid] return uid, data data = {} # 1. Load data from each loaders for name, loader in self.loader_dict.items(): try: value = loader[uid] if isinstance(value, (list, tuple)): value = np.array(value) if not isinstance( value, (np.ndarray, torch.Tensor, str, numbers.Number) ): raise TypeError( f"Must be ndarray, torch.Tensor, str or Number: {type(value)}" ) except Exception: path, _type = self.debug_info[name] logging.error( f"Error happened with path={path}, type={_type}, id={uid}" ) raise # torch.Tensor is converted to ndarray if isinstance(value, torch.Tensor): value = value.numpy() elif isinstance(value, numbers.Number): value = np.array([value]) data[name] = value # 2. [Option] Apply preprocessing # e.g. espnet2.train.preprocessor:CommonPreprocessor if self.preprocess is not None: data = self.preprocess(uid, data) # 3. Force data-precision for name in data: value = data[name] if not isinstance(value, np.ndarray): raise RuntimeError( f"All values must be converted to np.ndarray object " f'by preprocessing, but "{name}" is still {type(value)}.' ) # Cast to desired type if value.dtype.kind == "f": value = value.astype(self.float_dtype) elif value.dtype.kind == "i": value = value.astype(self.int_dtype) else: raise NotImplementedError(f"Not supported dtype: {value.dtype}") data[name] = value if self.cache is not None and self.cache.size < self.max_cache_size: self.cache[uid] = data retval = uid, data assert check_return_type(retval) return retval