import copy from distutils.version import LooseVersion from io import StringIO from pathlib import Path from typing import Callable from typing import Collection from typing import Dict from typing import Iterable from typing import Tuple from typing import Union import kaldiio import numpy as np import soundfile import torch from typeguard import check_argument_types from espnet2.train.dataset import ESPnetDataset if LooseVersion(torch.__version__) >= LooseVersion("1.2"): from torch.utils.data.dataset import IterableDataset else: from torch.utils.data.dataset import Dataset as IterableDataset def load_kaldi(input): retval = kaldiio.load_mat(input) if isinstance(retval, tuple): assert len(retval) == 2, len(retval) if isinstance(retval[0], int) and isinstance(retval[1], np.ndarray): # sound scp case rate, array = retval elif isinstance(retval[1], int) and isinstance(retval[0], np.ndarray): # Extended ark format case array, rate = retval else: raise RuntimeError(f"Unexpected type: {type(retval[0])}, {type(retval[1])}") # Multichannel wave fie # array: (NSample, Channel) or (Nsample) else: # Normal ark case assert isinstance(retval, np.ndarray), type(retval) array = retval return array DATA_TYPES = { "sound": lambda x: soundfile.read(x)[0], "kaldi_ark": load_kaldi, "npy": np.load, "text_int": lambda x: np.loadtxt( StringIO(x), ndmin=1, dtype=np.long, delimiter=" " ), "csv_int": lambda x: np.loadtxt(StringIO(x), ndmin=1, dtype=np.long, delimiter=","), "text_float": lambda x: np.loadtxt( StringIO(x), ndmin=1, dtype=np.float32, delimiter=" " ), "csv_float": lambda x: np.loadtxt( StringIO(x), ndmin=1, dtype=np.float32, delimiter="," ), "text": lambda x: x, } class IterableESPnetDataset(IterableDataset): """Pytorch Dataset class for ESPNet. Examples: >>> dataset = IterableESPnetDataset([('wav.scp', 'input', 'sound'), ... ('token_int', 'output', 'text_int')], ... ) >>> for uid, data in dataset: ... data {'input': per_utt_array, 'output': per_utt_array} """ def __init__( self, path_name_type_list: Collection[Tuple[str, str, str]], preprocess: Callable[ [str, Dict[str, np.ndarray]], Dict[str, np.ndarray] ] = None, float_dtype: str = "float32", int_dtype: str = "long", key_file: str = None, ): assert check_argument_types() if len(path_name_type_list) == 0: raise ValueError( '1 or more elements are required for "path_name_type_list"' ) path_name_type_list = copy.deepcopy(path_name_type_list) self.preprocess = preprocess self.float_dtype = float_dtype self.int_dtype = int_dtype self.key_file = key_file self.debug_info = {} non_iterable_list = [] self.path_name_type_list = [] for path, name, _type in path_name_type_list: if name in self.debug_info: raise RuntimeError(f'"{name}" is duplicated for data-key') self.debug_info[name] = path, _type if _type not in DATA_TYPES: non_iterable_list.append((path, name, _type)) else: self.path_name_type_list.append((path, name, _type)) if len(non_iterable_list) != 0: # Some types doesn't support iterable mode self.non_iterable_dataset = ESPnetDataset( path_name_type_list=non_iterable_list, preprocess=preprocess, float_dtype=float_dtype, int_dtype=int_dtype, ) else: self.non_iterable_dataset = None if Path(Path(path_name_type_list[0][0]).parent, "utt2category").exists(): self.apply_utt2category = True else: self.apply_utt2category = False def has_name(self, name) -> bool: return name in self.debug_info def names(self) -> Tuple[str, ...]: return tuple(self.debug_info) def __repr__(self): _mes = self.__class__.__name__ _mes += "(" for name, (path, _type) in self.debug_info.items(): _mes += f'\n {name}: {{"path": "{path}", "type": "{_type}"}}' _mes += f"\n preprocess: {self.preprocess})" return _mes def __iter__(self) -> Iterable[Tuple[Union[str, int], Dict[str, np.ndarray]]]: if self.key_file is not None: uid_iter = ( line.rstrip().split(maxsplit=1)[0] for line in open(self.key_file, encoding="utf-8") ) elif len(self.path_name_type_list) != 0: uid_iter = ( line.rstrip().split(maxsplit=1)[0] for line in open(self.path_name_type_list[0][0], encoding="utf-8") ) else: uid_iter = iter(self.non_iterable_dataset) files = [open(lis[0], encoding="utf-8") for lis in self.path_name_type_list] worker_info = torch.utils.data.get_worker_info() linenum = 0 count = 0 for count, uid in enumerate(uid_iter, 1): # If num_workers>=1, split keys if worker_info is not None: if (count - 1) % worker_info.num_workers != worker_info.id: continue # 1. Read a line from each file while True: keys = [] values = [] for f in files: linenum += 1 try: line = next(f) except StopIteration: raise RuntimeError(f"{uid} is not found in the files") sps = line.rstrip().split(maxsplit=1) if len(sps) != 2: raise RuntimeError( f"This line doesn't include a space:" f" {f}:L{linenum}: {line})" ) key, value = sps keys.append(key) values.append(value) for k_idx, k in enumerate(keys): if k != keys[0]: raise RuntimeError( f"Keys are mismatched. Text files (idx={k_idx}) is " f"not sorted or not having same keys at L{linenum}" ) # If the key is matched, break the loop if len(keys) == 0 or keys[0] == uid: break # 2. Load the entry from each line and create a dict data = {} # 2.a. Load data streamingly for value, (path, name, _type) in zip(values, self.path_name_type_list): func = DATA_TYPES[_type] # Load entry array = func(value) data[name] = array if self.non_iterable_dataset is not None: # 2.b. Load data from non-iterable dataset _, from_non_iterable = self.non_iterable_dataset[uid] data.update(from_non_iterable) # 3. [Option] Apply preprocessing # e.g. espnet2.train.preprocessor:CommonPreprocessor if self.preprocess is not None: data = self.preprocess(uid, data) # 4. Force data-precision for name in data: value = data[name] if not isinstance(value, np.ndarray): raise RuntimeError( f"All values must be converted to np.ndarray object " f'by preprocessing, but "{name}" is still {type(value)}.' ) # Cast to desired type if value.dtype.kind == "f": value = value.astype(self.float_dtype) elif value.dtype.kind == "i": value = value.astype(self.int_dtype) else: raise NotImplementedError(f"Not supported dtype: {value.dtype}") data[name] = value yield uid, data if count == 0: raise RuntimeError("No iteration")