tobiaspires commited on
Commit
884a837
·
1 Parent(s): 2fb212a

Commit Inicial

Browse files
Files changed (1) hide show
  1. app.py +85 -0
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
4
+ from diffusers import StableDiffusionInpaintPipeline
5
+ from PIL import Image, ImageOps
6
+ import PIL
7
+
8
+ # cuda cpu
9
+ device_name = 'cuda'
10
+ device = torch.device(device_name)
11
+
12
+ processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
13
+ model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
14
+ inpainting_pipeline = StableDiffusionInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting").to(device)
15
+
16
+
17
+ def numpy_to_pil(images):
18
+ if images.ndim == 3:
19
+ images = images[None, ...]
20
+ images = (images * 255).round().astype("uint8")
21
+
22
+ if images.shape[-1] == 1:
23
+ # special case for grayscale (single channel) images
24
+ pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
25
+ else:
26
+ pil_images = [Image.fromarray(image) for image in images]
27
+
28
+ return pil_images
29
+
30
+
31
+ def get_mask(text, image):
32
+ inputs = processor(
33
+ text=[text], images=[image], padding="max_length", return_tensors="pt"
34
+ ).to(device)
35
+
36
+ outputs = model(**inputs)
37
+ mask = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy()
38
+
39
+ mask_pil = numpy_to_pil(mask)[0].resize(image.size)
40
+ #mask_pil.show()
41
+ return mask_pil
42
+
43
+
44
+ def predict(prompt, negative_prompt, image, obj2mask):
45
+ mask = get_mask(obj2mask, image)
46
+ image = image.convert("RGB").resize((512, 512))
47
+ mask_image = mask.convert("RGB").resize((512, 512))
48
+ mask_image = ImageOps.invert(mask_image)
49
+ images = inpainting_pipeline(prompt=prompt, negative_prompt=negative_prompt, image=image,
50
+ mask_image=mask_image).images
51
+ mask = mask_image.convert('L')
52
+
53
+ PIL.Image.composite(images[0], image, mask)
54
+ return (images[0])
55
+
56
+
57
+ def inference(prompt, negative_prompt, obj2mask, image_numpy):
58
+ generator = torch.Generator()
59
+ generator.manual_seed(int(52362))
60
+
61
+ image = numpy_to_pil(image_numpy)[0].convert("RGB").resize((512, 512))
62
+ img = predict(prompt, negative_prompt, image, obj2mask)
63
+ return img
64
+
65
+
66
+ with gr.Blocks() as demo:
67
+ with gr.Row():
68
+ with gr.Column():
69
+ prompt = gr.Textbox(label="Prompt", value="cinematic, landscape, sharpe focus")
70
+ negative_prompt = gr.Textbox(label="Negative Prompt", value="illustration, 3d render")
71
+ mask = gr.Textbox(label="Mask", value="shoe")
72
+ intput_img = gr.Image()
73
+ run = gr.Button(value="Generate")
74
+ with gr.Column():
75
+ output_img = gr.Image()
76
+
77
+ run.click(
78
+ inference,
79
+ inputs=[prompt, negative_prompt, mask, intput_img
80
+ ],
81
+ outputs=output_img,
82
+ )
83
+
84
+ demo.queue(concurrency_count=1)
85
+ demo.launch()