Spaces:
Running
Running
File size: 18,010 Bytes
c528bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
# --------------------------------------------- Libraries ----------------------------------------------------------#
import gradio as gr
from PyPDF2 import PdfReader
import nbformat
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter, MarkdownTextSplitter, PythonCodeTextSplitter, Language
from langchain.docstore.document import Document
from langchain_community.document_loaders import Docx2txtLoader, CSVLoader
# --------------------------------------------- Functions ----------------------------------------------------------#
def process_uploaded_file(uploaded_file):
text = ""
display_content = ""
file_extension = uploaded_file.name.split(".")[-1]
if file_extension == "pdf":
try:
# Gradio's uploaded_file.name provides the path to the temporary file
pdf = PdfReader(uploaded_file.name)
for page in pdf.pages:
page_text = page.extract_text()
text += page_text + "\n"
display_content += page_text + "\n"
except Exception as e:
display_content = f"Error reading PDF file: {e}"
text = ""
elif file_extension == "docx":
try:
docx_loader = Docx2txtLoader(uploaded_file.name)
documents = docx_loader.load()
text = "\n".join([doc.page_content for doc in documents])
display_content = text
except Exception as e:
display_content = f"Error reading DOCX file: {e}"
text = ""
elif file_extension in ["html", "css", "py", "txt"]:
try:
with open(uploaded_file.name, "r", encoding="utf-8") as f:
file_content = f.read()
display_content = file_content # Display as plain text in Textbox
text = file_content
except Exception as e:
display_content = f"Error reading {file_extension.upper()} file: {e}"
text = ""
elif file_extension == "ipynb":
try:
# nbformat.read can take a file path
nb_content = nbformat.read(uploaded_file.name, as_version=4)
nb_filtered = [cell for cell in nb_content["cells"] if cell["cell_type"] in ["code", "markdown"]]
for cell in nb_filtered:
if cell["cell_type"] == "code":
display_content += f"```python\n{cell['source']}\n```\n"
text += cell["source"] + "\n"
elif cell["cell_type"] == "markdown":
display_content += f"{cell['source']}\n"
text += cell["source"] + "\n"
except Exception as e:
display_content = f"Error reading IPYNB file: {e}"
text = ""
elif file_extension == "csv":
try:
loader = CSVLoader(file_path=uploaded_file.name, encoding="utf-8", csv_args={'delimiter': ','})
documents = loader.load()
text = "\n".join([doc.page_content for doc in documents])
display_content = text # For CSV, display the concatenated text
except Exception as e:
display_content = f"Error reading CSV file: {e}"
text = ""
else:
display_content = "Unsupported file type."
text = ""
return text, display_content
def chunk_recursive(text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace):
if not text:
return [], ""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
keep_separator=keep_separator,
add_start_index=add_start_index,
strip_whitespace=strip_whitespace,
)
chunks = text_splitter.create_documents([text])
formatted_chunks = []
for chunk in chunks:
if isinstance(chunk, Document):
formatted_chunks.append({"content": chunk.page_content, "metadata": chunk.metadata})
else:
formatted_chunks.append({"content": str(chunk), "metadata": {}})
code_example = f"""
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_content = \"\"\"{text[:50]}...\"\"\" # Truncated for example
text_splitter = RecursiveCharacterTextSplitter(
chunk_size={chunk_size},
chunk_overlap={chunk_overlap},
length_function=len,
keep_separator={keep_separator},
add_start_index={add_start_index},
strip_whitespace={strip_whitespace},
)
chunks = text_splitter.create_documents([text_content])
# Access chunks: chunks[0].page_content, chunks[0].metadata
"""
return formatted_chunks, code_example
def chunk_character(text, chunk_size, chunk_overlap, separator, keep_separator, add_start_index, strip_whitespace):
if not text:
return [], ""
if isinstance(separator, list):
separator_str = "".join(separator)
else:
separator_str = separator
text_splitter = CharacterTextSplitter(
separator=separator_str,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
keep_separator=keep_separator,
add_start_index=add_start_index,
strip_whitespace=strip_whitespace,
)
chunks = text_splitter.create_documents([text])
formatted_chunks = []
for chunk in chunks:
if isinstance(chunk, Document):
formatted_chunks.append({"content": chunk.page_content, "metadata": chunk.metadata})
else:
formatted_chunks.append({"content": str(chunk), "metadata": {}})
code_example = f"""
from langchain.text_splitter import CharacterTextSplitter
text_content = \"\"\"{text[:50]}...\"\"\" # Truncated for example
text_splitter = CharacterTextSplitter(
separator=\"\"\"{separator_str}\"\"\",
chunk_size={chunk_size},
chunk_overlap={chunk_overlap},
length_function=len,
keep_separator={keep_separator},
add_start_index={add_start_index},
strip_whitespace={strip_whitespace},
)
chunks = text_splitter.create_documents([text_content])
# Access chunks: chunks[0].page_content, chunks[0].metadata
"""
return formatted_chunks, code_example
def chunk_python_code(text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace):
if not text:
return [], ""
text_splitter = PythonCodeTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
keep_separator=keep_separator,
add_start_index=add_start_index,
strip_whitespace=strip_whitespace,
)
chunks = text_splitter.create_documents([text])
formatted_chunks = []
for chunk in chunks:
if isinstance(chunk, Document):
formatted_chunks.append({"content": chunk.page_content, "metadata": chunk.metadata})
else:
formatted_chunks.append({"content": str(chunk), "metadata": {}})
code_example = f"""
from langchain.text_splitter import PythonCodeTextSplitter
text_content = \"\"\"{text[:50]}...\"\"\" # Truncated for example
text_splitter = PythonCodeTextSplitter(
chunk_size={chunk_size},
chunk_overlap={chunk_overlap},
keep_separator={keep_separator},
add_start_index={add_start_index},
strip_whitespace={strip_whitespace},
)
chunks = text_splitter.create_documents([text_content])
# Access chunks: chunks[0].page_content, chunks[0].metadata
"""
return formatted_chunks, code_example
def chunk_javascript_code(text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace):
if not text:
return [], ""
text_splitter = RecursiveCharacterTextSplitter.from_language(
language=Language.JS,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
keep_separator=keep_separator,
add_start_index=add_start_index,
strip_whitespace=strip_whitespace,
)
chunks = text_splitter.create_documents([text])
formatted_chunks = []
for chunk in chunks:
if isinstance(chunk, Document):
formatted_chunks.append({"content": chunk.page_content, "metadata": chunk.metadata})
else:
formatted_chunks.append({"content": str(chunk), "metadata": {}})
code_example = f"""
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language
text_content = \"\"\"{text[:50]}...\"\"\" # Truncated for example
text_splitter = RecursiveCharacterTextSplitter.from_language(
language=Language.JS,
chunk_size={chunk_size},
chunk_overlap={chunk_overlap},
keep_separator={keep_separator},
add_start_index={add_start_index},
strip_whitespace={strip_whitespace},
)
chunks = text_splitter.create_documents([text_content])
# Access chunks: chunks[0].page_content, chunks[0].metadata
"""
return formatted_chunks, code_example
def chunk_markdown(text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace):
if not text:
return [], ""
text_splitter = MarkdownTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
keep_separator=keep_separator,
add_start_index=add_start_index,
strip_whitespace=strip_whitespace,
)
chunks = text_splitter.create_documents([text])
formatted_chunks = []
for chunk in chunks:
if isinstance(chunk, Document):
formatted_chunks.append({"content": chunk.page_content, "metadata": chunk.metadata})
else:
formatted_chunks.append({"content": str(chunk), "metadata": {}})
code_example = f"""
from langchain.text_splitter import MarkdownTextSplitter
text_content = \"\"\"{text[:50]}...\"\"\" # Truncated for example
text_splitter = MarkdownTextSplitter(
chunk_size={chunk_size},
chunk_overlap={chunk_overlap},
length_function=len,
keep_separator={keep_separator},
add_start_index={add_start_index},
strip_whitespace={strip_whitespace},
)
chunks = text_splitter.create_documents([text_content])
# Access chunks: chunks[0].page_content, chunks[0].metadata
"""
return formatted_chunks, code_example
def main_interface(uploaded_file, chunk_size, chunk_overlap, separator, keep_separator, add_start_index, strip_whitespace):
if uploaded_file is None:
return "", "", [], [], [], [], [], "", "", "", "", "", "", "", "", "", "", ""
# Ensure chunk_size and chunk_overlap are integers
chunk_size = int(chunk_size)
chunk_overlap = int(chunk_overlap)
raw_text, display_content = process_uploaded_file(uploaded_file)
recursive_chunks, recursive_code = chunk_recursive(raw_text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace)
character_chunks, character_code = chunk_character(raw_text, chunk_size, chunk_overlap, separator, keep_separator, add_start_index, strip_whitespace)
markdown_chunks, markdown_code = chunk_markdown(raw_text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace)
python_chunks, python_code = chunk_python_code(raw_text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace)
javascript_chunks, javascript_code = chunk_javascript_code(raw_text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace)
return (
display_content,
raw_text,
recursive_chunks,
character_chunks,
markdown_chunks,
python_chunks,
javascript_chunks,
f"Number of chunks: {len(recursive_chunks)}",
f"Number of chunks: {len(character_chunks)}",
f"Number of chunks: {len(markdown_chunks)}",
f"Number of chunks: {len(python_chunks)}",
f"Number of chunks: {len(javascript_chunks)}",
recursive_code,
character_code,
markdown_code,
python_code,
javascript_code
)
# --------------------------------------------- Gradio Interface ----------------------------------------------------------#
with gr.Blocks(theme=gr.themes.Soft(), title="π¦οΈπ LangChain Text Chunker") as demo:
gr.Markdown(
"""
# π¦οΈπ LangChain Text Chunker
Welcome to the LangChain Text Chunker application! This tool allows you to upload various document types,
extract their text content, and then apply different LangChain text splitting (chunking) methods.
You can observe how each method breaks down the text into smaller, manageable chunks, along with their metadata.
### How to Use:
1. **Upload your document**: Select a file (PDF, DOCX, TXT, HTML, CSS, PY, IPYNB, CSV) using the file input.
2. **Adjust Chunking Parameters**: Use the sliders and dropdowns to customize `Chunk Size`, `Chunk Overlap`,
`Character Splitter Separator`, `Keep Separator` behavior, `Add Start Index` to metadata, and `Strip Whitespace`.
3. **Process Document**: Click the "Process Document" button to see the extracted raw text and the results
of various chunking methods in their respective tabs.
4. **Explore Chunks**: Each tab will display the chunks as JSON, along with the total number of chunks created.
5. **Python Example Code**: You can view dynamically generated Python π example code.
6. **Inference**: This Gradio app is inferred from [Mervin Praison's work](https://mer.vin/2024/03/chunking-strategy/) about "Advanced Chunking Strategies".
"""
)
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload your document", file_types=[".pdf", ".docx", ".txt", ".html", ".css", ".py", ".ipynb", ".csv"])
process_button = gr.Button("Process Document", variant="primary")
with gr.Accordion("Chunking Parameters", open=False):
chunk_size_input = gr.Slider(minimum=100, maximum=2000, value=250, step=50, label="Chunk Size", info="Maximum size of chunks to return.")
chunk_overlap_input = gr.Slider(minimum=0, maximum=500, value=0, step=10, label="Chunk Overlap", info="Overlap in characters between chunks.")
separator_input = gr.Dropdown(
label="Character Splitter Separator",
choices=["\\n\\n", "\\n", " ", "", "\n", "." ,",", ";", ":", "!", "?", "-",
"β", "(", ")", "[", "]", "{", "}", '"', "'",
"β", "β", "β", "β", "..."], # Representing common separators
value="\\n\\n",
allow_custom_value=True,
multiselect=True,
info="Characters to split on for Character Chunking. Multiple selections will be joined."
)
keep_separator_input = gr.Dropdown(
label="Keep Separator",
choices=[True, False, "start", "end"],
value=False,
info="Whether to keep the separator and where to place it in each corresponding chunk (True='start')."
)
add_start_index_input = gr.Checkbox(label="Add Start Index to Metadata", value=True, info="If checked, includes chunkβs start index in metadata.")
strip_whitespace_input = gr.Checkbox(label="Strip Whitespace", value=True, info="If checked, strips whitespace from the start and end of every document.")
with gr.Column(scale=2):
raw_text_display = gr.Textbox(label="Extracted Raw Text", lines=10, interactive=False, show_copy_button=True)
hidden_raw_text = gr.State("") # To store the actual raw text for chunking
with gr.Tabs():
with gr.TabItem("Recursive Chunking"):
recursive_count_output = gr.Markdown()
recursive_output = gr.JSON(label="Recursive Chunks")
recursive_code_output = gr.Code(label="Python Code Example", language="python", interactive=False)
with gr.TabItem("Character Chunking"):
character_count_output = gr.Markdown()
character_output = gr.JSON(label="Character Chunks")
character_code_output = gr.Code(label="Python Code Example", language="python", interactive=False)
with gr.TabItem("Markdown Chunking"):
markdown_count_output = gr.Markdown()
markdown_output = gr.JSON(label="Markdown Chunks")
markdown_code_output = gr.Code(label="Python Code Example", language="python", interactive=False)
with gr.TabItem("Python Code Chunking"):
python_count_output = gr.Markdown()
python_output = gr.JSON(label="Python Code Chunks")
python_code_output = gr.Code(label="Python Code Example", language="python", interactive=False)
with gr.TabItem("JavaScript Code Chunking"):
javascript_count_output = gr.Markdown()
javascript_output = gr.JSON(label="JavaScript Code Chunks")
javascript_code_output = gr.Code(label="Python Code Example", language="python", interactive=False)
process_button.click(
fn=main_interface,
inputs=[
file_input,
chunk_size_input,
chunk_overlap_input,
separator_input,
keep_separator_input,
add_start_index_input,
strip_whitespace_input
],
outputs=[
raw_text_display,
hidden_raw_text,
recursive_output,
character_output,
markdown_output,
python_output,
javascript_output,
recursive_count_output,
character_count_output,
markdown_count_output,
python_count_output,
javascript_count_output,
recursive_code_output,
character_code_output,
markdown_code_output,
python_code_output,
javascript_code_output
]
)
demo.queue().launch(share=False, inbrowser=True)
|