Spaces:
Runtime error
Runtime error
Tolga
commited on
Commit
·
39ef911
1
Parent(s):
1cb41a9
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,42 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
|
4 |
+
def classify_sentence(sent:str):
|
5 |
+
toksentence = tokenizer(sent,truncation=True,return_tensors="pt")
|
6 |
+
model.eval()
|
7 |
+
with torch.no_grad():
|
8 |
+
toksentence.to(device)
|
9 |
+
output = model(**toksentence)
|
10 |
+
|
11 |
+
return F.softmax(output.logits,dim=1).argmax(dim=1)
|
12 |
+
|
13 |
+
|
14 |
+
def classify_text(text:str):
|
15 |
+
sentences = sent_tokenize(text)
|
16 |
+
annotations = np.array(list(map(classify_sentence,sentences)),dtype=object)
|
17 |
+
result = list(zip(sentences,[mapping[val] for val in annotations]))
|
18 |
+
return (annotations,result)
|
19 |
+
|
20 |
+
def classify_text_wrapper(text:str):
|
21 |
+
preds,result = classify_text(text)
|
22 |
+
n = len(preds)
|
23 |
+
non_biased = np.where(preds==0)[0].shape[0]
|
24 |
+
biased = np.where(preds==1)[0].shape[0]
|
25 |
+
|
26 |
+
return (result,{'bias ratio':biased/n})
|
27 |
+
|
28 |
+
examples=[["[Newsoms's] obsession with masks has created an almost hostile environment in our neighborhoods and streets.\n“He won because the Election was Rigged,” Trump wrote, not referring to Biden by name, adding a list of complaints about vote counting"]]
|
29 |
+
|
30 |
+
model = AutoModelForSequenceClassification.from_pretrained("tkurtulus/autotrain-rottentomato-2981285985")
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained("tkurtulus/autotrain-rottentomato-2981285985");
|
32 |
+
model.eval();
|
33 |
+
|
34 |
+
label = gr.outputs.Label(num_top_classes=None,label='')
|
35 |
+
text_h = gr.outputs.HighlightedText(color_map={'Unbiased':'#9ad1A1','Biased':'#db8a8a'},label='Classification')
|
36 |
+
inputs = gr.inputs.Textbox(placeholder=None, default="", label=None)
|
37 |
+
|
38 |
+
app = gr.Interface(fn=classify_text_wrapper,title='Bias classifier',theme='default',
|
39 |
+
inputs="textbox",layout='unaligned', outputs=[text_h,label], capture_session=True
|
40 |
+
,examples=examples)
|
41 |
+
|
42 |
+
app.launch(inbrowser=True)
|