tom-b974 commited on
Commit
933c912
·
verified ·
1 Parent(s): 289d26d

Update tasks/image.py

Browse files
Files changed (1) hide show
  1. tasks/image.py +18 -12
tasks/image.py CHANGED
@@ -108,31 +108,37 @@ async def evaluate_image(request: ImageEvaluationRequest):
108
  true_boxes_list = []
109
 
110
  for example in test_dataset:
 
111
  image = example["image"]
112
  annotation = example.get("annotations", "").strip()
 
 
113
  has_smoke = len(annotation) > 0
114
  true_labels.append(int(has_smoke))
115
-
 
116
  if has_smoke:
117
  image_true_boxes = parse_boxes(annotation)
118
  true_boxes_list.append(image_true_boxes)
 
 
119
 
120
- # Perform YOLO inference
121
- results = yolo_model.predict(image)
122
 
123
- # Extract predicted box if it exists
124
- if len(results[0].boxes): # Check if predictions exist
125
- pred_box = results[0].boxes.xywh[0].cpu().numpy().tolist() # Take the first box
126
- else:
127
- pred_box = [] # No prediction for this image
128
  else:
129
- true_boxes_list.append([])
130
- pred_box = [] # No ground truth or predictions for this image
131
 
 
132
  pred_boxes.append(pred_box)
 
133
 
134
- # Classification: If predictions exist, assume smoke is present
135
- predictions.append(1 if len(results[0].boxes) > 0 else 0)
136
 
137
 
138
  #--------------------------------------------------------------------------------------------
 
108
  true_boxes_list = []
109
 
110
  for example in test_dataset:
111
+ # Extract image and annotations
112
  image = example["image"]
113
  annotation = example.get("annotations", "").strip()
114
+
115
+ # Determine if ground truth smoke is present
116
  has_smoke = len(annotation) > 0
117
  true_labels.append(int(has_smoke))
118
+
119
+ # Parse ground truth boxes if smoke is present
120
  if has_smoke:
121
  image_true_boxes = parse_boxes(annotation)
122
  true_boxes_list.append(image_true_boxes)
123
+ else:
124
+ true_boxes_list.append([]) # No ground truth boxes
125
 
126
+ # Perform YOLO inference
127
+ results = yolo_model.predict(image)
128
 
129
+ # Extract predicted box if predictions exist
130
+ if len(results[0].boxes):
131
+ pred_box = results[0].boxes.xywh[0].cpu().numpy().tolist() # Take the first box
132
+ predictions.append(1) # Predicted smoke
 
133
  else:
134
+ pred_box = [] # No prediction for this image
135
+ predictions.append(0) # Predicted no smoke
136
 
137
+ # Append the predicted box (empty if no predictions)
138
  pred_boxes.append(pred_box)
139
+
140
 
141
+
 
142
 
143
 
144
  #--------------------------------------------------------------------------------------------