Spaces:
Runtime error
Runtime error
Merge branch 'main' of https://github.com/borisdayma/dalle-mini into main
Browse files- .github/workflows/sync_to_hub.yml +1 -1
- .github/workflows/sync_to_hub_debug.yml +1 -1
- README.md +2 -1
- app/streamlit/app.py +1 -1
- setup.cfg +1 -0
- src/dalle_mini/data.py +12 -3
- src/dalle_mini/model/text.py +3 -0
- tools/train/config/mega/config.json +27 -8
- tools/train/config/mini/config.json +1 -1
- tools/train/scalable_shampoo/README.md +1 -1
- tools/train/scalable_shampoo/distributed_shampoo.py +153 -30
- tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py +170 -8
- tools/train/train.py +50 -9
.github/workflows/sync_to_hub.yml
CHANGED
@@ -17,4 +17,4 @@ jobs:
|
|
17 |
- name: Push to hub
|
18 |
env:
|
19 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
20 |
-
run: git push https://boris:[email protected]/spaces/
|
|
|
17 |
- name: Push to hub
|
18 |
env:
|
19 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
20 |
+
run: git push https://boris:[email protected]/spaces/dalle-mini/dalle-mini main
|
.github/workflows/sync_to_hub_debug.yml
CHANGED
@@ -14,4 +14,4 @@ jobs:
|
|
14 |
- name: Push to hub
|
15 |
env:
|
16 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
17 |
-
run: git push --force https://boris:[email protected]/spaces/
|
|
|
14 |
- name: Push to hub
|
15 |
env:
|
16 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
17 |
+
run: git push --force https://boris:[email protected]/spaces/dalle-mini/dalle-mini-debug +HEAD:main
|
README.md
CHANGED
@@ -6,6 +6,7 @@ colorTo: green
|
|
6 |
sdk: streamlit
|
7 |
app_file: app/streamlit/app.py
|
8 |
pinned: True
|
|
|
9 |
---
|
10 |
|
11 |
# DALL·E Mini
|
@@ -18,7 +19,7 @@ _Generate images from a text prompt_
|
|
18 |
|
19 |
Our logo was generated with DALL·E mini using the prompt "logo of an armchair in the shape of an avocado".
|
20 |
|
21 |
-
You can create your own pictures with [the demo](https://huggingface.co/spaces/
|
22 |
|
23 |
## How does it work?
|
24 |
|
|
|
6 |
sdk: streamlit
|
7 |
app_file: app/streamlit/app.py
|
8 |
pinned: True
|
9 |
+
license: apache-2.0
|
10 |
---
|
11 |
|
12 |
# DALL·E Mini
|
|
|
19 |
|
20 |
Our logo was generated with DALL·E mini using the prompt "logo of an armchair in the shape of an avocado".
|
21 |
|
22 |
+
You can create your own pictures with [the demo](https://huggingface.co/spaces/dalle-mini/dalle-mini).
|
23 |
|
24 |
## How does it work?
|
25 |
|
app/streamlit/app.py
CHANGED
@@ -78,7 +78,7 @@ if prompt != "":
|
|
78 |
</div>
|
79 |
</div>
|
80 |
</div>
|
81 |
-
<small><i>Predictions may take up to
|
82 |
""",
|
83 |
unsafe_allow_html=True,
|
84 |
)
|
|
|
78 |
</div>
|
79 |
</div>
|
80 |
</div>
|
81 |
+
<small><i>Predictions may take up to 5mn under high load. Please stand by.</i></small>
|
82 |
""",
|
83 |
unsafe_allow_html=True,
|
84 |
)
|
setup.cfg
CHANGED
@@ -27,6 +27,7 @@ install_requires =
|
|
27 |
einops
|
28 |
unidecode
|
29 |
ftfy
|
|
|
30 |
pillow
|
31 |
jax
|
32 |
flax
|
|
|
27 |
einops
|
28 |
unidecode
|
29 |
ftfy
|
30 |
+
emoji
|
31 |
pillow
|
32 |
jax
|
33 |
flax
|
src/dalle_mini/data.py
CHANGED
@@ -43,6 +43,8 @@ class Dataset:
|
|
43 |
if self.seed_dataset is None:
|
44 |
# create a random seed
|
45 |
self.seed_dataset = random.randint(0, 2**32 - 1)
|
|
|
|
|
46 |
self.multi_hosts = jax.process_count() > 1
|
47 |
# feed blank captions only in streaming mode for now
|
48 |
# otherwise dataset could be cached with same blanked captions
|
@@ -173,6 +175,7 @@ class Dataset:
|
|
173 |
blank_caption_function,
|
174 |
text_column=self.text_column,
|
175 |
blank_caption_prob=self.blank_caption_prob,
|
|
|
176 |
)
|
177 |
if hasattr(self, "train_dataset"):
|
178 |
self.train_dataset = (
|
@@ -180,7 +183,9 @@ class Dataset:
|
|
180 |
if self.streaming
|
181 |
else self.train_dataset.map(
|
182 |
partial_blank_caption_function,
|
183 |
-
num_proc=
|
|
|
|
|
184 |
load_from_cache_file=False,
|
185 |
desc="Blanking some captions",
|
186 |
)
|
@@ -316,8 +321,12 @@ def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int):
|
|
316 |
return shifted_input_ids
|
317 |
|
318 |
|
319 |
-
def blank_caption_function(example, text_column, blank_caption_prob):
|
320 |
-
if
|
|
|
|
|
|
|
|
|
321 |
example[text_column] = ""
|
322 |
return example
|
323 |
|
|
|
43 |
if self.seed_dataset is None:
|
44 |
# create a random seed
|
45 |
self.seed_dataset = random.randint(0, 2**32 - 1)
|
46 |
+
# set numpy rng
|
47 |
+
self.np_rng = np.random.default_rng(self.seed_dataset)
|
48 |
self.multi_hosts = jax.process_count() > 1
|
49 |
# feed blank captions only in streaming mode for now
|
50 |
# otherwise dataset could be cached with same blanked captions
|
|
|
175 |
blank_caption_function,
|
176 |
text_column=self.text_column,
|
177 |
blank_caption_prob=self.blank_caption_prob,
|
178 |
+
rng=self.np_rng,
|
179 |
)
|
180 |
if hasattr(self, "train_dataset"):
|
181 |
self.train_dataset = (
|
|
|
183 |
if self.streaming
|
184 |
else self.train_dataset.map(
|
185 |
partial_blank_caption_function,
|
186 |
+
num_proc=None
|
187 |
+
if self.seed_dataset
|
188 |
+
else self.preprocessing_num_workers,
|
189 |
load_from_cache_file=False,
|
190 |
desc="Blanking some captions",
|
191 |
)
|
|
|
321 |
return shifted_input_ids
|
322 |
|
323 |
|
324 |
+
def blank_caption_function(example, text_column, blank_caption_prob, rng=None):
|
325 |
+
if (
|
326 |
+
blank_caption_prob
|
327 |
+
and (rng.random() if rng is not None else np.random.random())
|
328 |
+
< blank_caption_prob
|
329 |
+
):
|
330 |
example[text_column] = ""
|
331 |
return example
|
332 |
|
src/dalle_mini/model/text.py
CHANGED
@@ -8,6 +8,7 @@ import random
|
|
8 |
import re
|
9 |
from pathlib import Path
|
10 |
|
|
|
11 |
import ftfy
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
from unidecode import unidecode
|
@@ -213,6 +214,8 @@ class TextNormalizer:
|
|
213 |
t = ftfy.fix_text(t)
|
214 |
# fix html
|
215 |
t = fix_html(t)
|
|
|
|
|
216 |
# decode and simplify text: see unidecode library
|
217 |
t = unidecode(t)
|
218 |
# lower case
|
|
|
8 |
import re
|
9 |
from pathlib import Path
|
10 |
|
11 |
+
import emoji
|
12 |
import ftfy
|
13 |
from huggingface_hub import hf_hub_download
|
14 |
from unidecode import unidecode
|
|
|
214 |
t = ftfy.fix_text(t)
|
215 |
# fix html
|
216 |
t = fix_html(t)
|
217 |
+
# decode emojis (would be removed by unidecode)
|
218 |
+
t = emoji.demojize(t)
|
219 |
# decode and simplify text: see unidecode library
|
220 |
t = unidecode(t)
|
221 |
# lower case
|
tools/train/config/mega/config.json
CHANGED
@@ -1,30 +1,49 @@
|
|
1 |
{
|
2 |
"activation_dropout": 0.0,
|
3 |
-
"activation_function": "
|
4 |
"attention_dropout": 0.0,
|
5 |
"bos_token_id": 16385,
|
6 |
"d_model": 2048,
|
7 |
"decoder_attention_heads": 32,
|
8 |
-
"decoder_ffn_dim":
|
9 |
"decoder_layerdrop": 0.0,
|
10 |
-
"decoder_layers":
|
11 |
"decoder_start_token_id": 16384,
|
|
|
12 |
"dropout": 0.0,
|
13 |
"encoder_attention_heads": 32,
|
14 |
-
"encoder_ffn_dim":
|
15 |
"encoder_layerdrop": 0.0,
|
16 |
-
"encoder_layers":
|
17 |
-
"encoder_vocab_size":
|
18 |
"eos_token_id": 16385,
|
|
|
|
|
19 |
"image_length": 256,
|
20 |
-
"image_vocab_size":
|
21 |
"init_std": 0.01,
|
22 |
"is_encoder_decoder": true,
|
|
|
|
|
|
|
23 |
"max_text_length": 64,
|
|
|
24 |
"model_type": "dallebart",
|
25 |
"normalize_text": true,
|
26 |
"pad_token_id": 16385,
|
27 |
"scale_embedding": false,
|
|
|
|
|
28 |
"tie_word_embeddings": false,
|
29 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
}
|
|
|
1 |
{
|
2 |
"activation_dropout": 0.0,
|
3 |
+
"activation_function": "swish",
|
4 |
"attention_dropout": 0.0,
|
5 |
"bos_token_id": 16385,
|
6 |
"d_model": 2048,
|
7 |
"decoder_attention_heads": 32,
|
8 |
+
"decoder_ffn_dim": 4096,
|
9 |
"decoder_layerdrop": 0.0,
|
10 |
+
"decoder_layers": 25,
|
11 |
"decoder_start_token_id": 16384,
|
12 |
+
"do_sample": true,
|
13 |
"dropout": 0.0,
|
14 |
"encoder_attention_heads": 32,
|
15 |
+
"encoder_ffn_dim": 4096,
|
16 |
"encoder_layerdrop": 0.0,
|
17 |
+
"encoder_layers": 25,
|
18 |
+
"encoder_vocab_size": 50272,
|
19 |
"eos_token_id": 16385,
|
20 |
+
"force_ln_scale": false,
|
21 |
+
"gradient_checkpointing": false,
|
22 |
"image_length": 256,
|
23 |
+
"image_vocab_size": 16415,
|
24 |
"init_std": 0.01,
|
25 |
"is_encoder_decoder": true,
|
26 |
+
"ln_positions": "normformer",
|
27 |
+
"ln_type": "layernorm",
|
28 |
+
"max_length": 257,
|
29 |
"max_text_length": 64,
|
30 |
+
"min_length": 257,
|
31 |
"model_type": "dallebart",
|
32 |
"normalize_text": true,
|
33 |
"pad_token_id": 16385,
|
34 |
"scale_embedding": false,
|
35 |
+
"sinkhorn_iters": 1,
|
36 |
+
"tau_init": 0.05,
|
37 |
"tie_word_embeddings": false,
|
38 |
+
"use_absolute_position_embeddings": true,
|
39 |
+
"use_alibi": false,
|
40 |
+
"use_bias": false,
|
41 |
+
"use_cache": true,
|
42 |
+
"use_cosine_attention": false,
|
43 |
+
"use_deepnet_scaling": false,
|
44 |
+
"use_final_ln_decoder": true,
|
45 |
+
"use_final_ln_encoder": true,
|
46 |
+
"use_glu": true,
|
47 |
+
"use_head_scale": false,
|
48 |
+
"use_swin_position_embeddings": false
|
49 |
}
|
tools/train/config/mini/config.json
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
"eos_token_id": 16385,
|
17 |
"gradient_checkpointing": false,
|
18 |
"image_length": 256,
|
19 |
-
"image_vocab_size":
|
20 |
"init_std": 0.02,
|
21 |
"is_encoder_decoder": true,
|
22 |
"max_text_length": 64,
|
|
|
16 |
"eos_token_id": 16385,
|
17 |
"gradient_checkpointing": false,
|
18 |
"image_length": 256,
|
19 |
+
"image_vocab_size": 16391,
|
20 |
"init_std": 0.02,
|
21 |
"is_encoder_decoder": true,
|
22 |
"max_text_length": 64,
|
tools/train/scalable_shampoo/README.md
CHANGED
@@ -4,4 +4,4 @@ Files copied from [google-research/scalable_shampoo/optax](https://github.com/go
|
|
4 |
|
5 |
Imports have been modified to be relative.
|
6 |
|
7 |
-
This will be replaced with `optax-shampoo` package
|
|
|
4 |
|
5 |
Imports have been modified to be relative.
|
6 |
|
7 |
+
This will eventually be replaced with `optax-shampoo` package.
|
tools/train/scalable_shampoo/distributed_shampoo.py
CHANGED
@@ -25,13 +25,12 @@
|
|
25 |
# Authors: Rohan Anil (rohananil at google dot com)
|
26 |
# & Vineet Gupta (vineet at google dot com)
|
27 |
#
|
28 |
-
|
29 |
"""Distributed Shampoo Implementation."""
|
30 |
|
31 |
import enum
|
32 |
import functools
|
33 |
import itertools
|
34 |
-
from typing import Any, List, NamedTuple
|
35 |
|
36 |
import chex
|
37 |
import jax
|
@@ -43,6 +42,7 @@ from flax import struct
|
|
43 |
from jax import lax
|
44 |
|
45 |
from .quantization_utils import QuantizedValue
|
|
|
46 |
|
47 |
# Dtype for inverse-pth root routine
|
48 |
# Switch to f64 if you have hardware that supports it. Enable the jax flag
|
@@ -141,7 +141,10 @@ class GraftingType(enum.IntEnum):
|
|
141 |
|
142 |
|
143 |
def power_iteration(
|
144 |
-
matrix,
|
|
|
|
|
|
|
145 |
):
|
146 |
r"""Power iteration algorithm.
|
147 |
|
@@ -156,10 +159,10 @@ def power_iteration(
|
|
156 |
matrix: the symmetric PSD matrix.
|
157 |
num_iters: Number of iterations.
|
158 |
error_tolerance: Iterative exit condition.
|
159 |
-
precision: precision XLA related flag, the available options are:
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
|
164 |
Returns:
|
165 |
eigen vector, eigen value
|
@@ -196,7 +199,11 @@ def power_iteration(
|
|
196 |
return v_out, s_out
|
197 |
|
198 |
|
199 |
-
def mat_power(
|
|
|
|
|
|
|
|
|
200 |
"""A simple matrix power method. M^p where p can be TracedValue."""
|
201 |
power = jnp.eye(mat_m.shape[0], dtype=_MAT_INV_PTH_ROOT_DTYPE)
|
202 |
|
@@ -245,15 +252,19 @@ def matrix_inverse_pth_root(
|
|
245 |
num_iters: Maximum number of iterations.
|
246 |
ridge_epsilon: Ridge epsilon added to make the matrix positive definite.
|
247 |
error_tolerance: Error indicator, useful for early termination.
|
248 |
-
precision: precision XLA related flag, the available options are:
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
|
253 |
Returns:
|
254 |
matrix^(-1/p)
|
255 |
"""
|
256 |
|
|
|
|
|
|
|
|
|
257 |
assert matrix.shape[0] == matrix.shape[1]
|
258 |
|
259 |
# We use _MAT_INV_PTH_ROOT_DTYPE for the matrix inverse pth root.
|
@@ -336,8 +347,8 @@ def merge_small_dims(shape_to_merge, max_dim):
|
|
336 |
return resulting_shape
|
337 |
|
338 |
|
339 |
-
def
|
340 |
-
"""Pad a matrix to
|
341 |
|
342 |
Args:
|
343 |
mat: a matrix to pad.
|
@@ -346,19 +357,132 @@ def pad_matrix(mat, max_size):
|
|
346 |
Returns:
|
347 |
Given M returns [[M, 0], [0, I]]
|
348 |
"""
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
return mat
|
353 |
-
pad_size = max_size -
|
354 |
-
|
355 |
-
|
|
|
356 |
eye = jnp.eye(pad_size, dtype=mat.dtype)
|
357 |
mat = jnp.concatenate([mat, zs1], 1)
|
358 |
mat = jnp.concatenate([mat, jnp.concatenate([zs2, eye], 1)], 0)
|
359 |
return mat
|
360 |
|
361 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
def pad_vector(vec, max_size):
|
363 |
"""Pad a vector to a max_size.
|
364 |
|
@@ -694,18 +818,17 @@ def distributed_shampoo(
|
|
694 |
num_devices_for_pjit: Number of devices to parallelize over when using pjit.
|
695 |
shard_optimizer_states: Shard optimizer states to save memory in model
|
696 |
parallel training.
|
697 |
-
best_effort_memory_usage_reduction: Best effort memory usage reduction.
|
698 |
-
diagonal_statistics -> jnp.bfloat16
|
699 |
-
momentum buffers (2x) -> jnp.int8
|
700 |
statistics, preconditioners -> jnp.int16 + diagonals
|
701 |
inverse_failure_threshold: numerics are hard and inverses fail sometimes; we
|
702 |
determine that using this threshold.
|
703 |
moving_average_for_momentum: Whether to use moving average for momentum
|
704 |
instead of exponential moving average.
|
705 |
skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is
|
706 |
-
|
707 |
-
clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful
|
708 |
-
|
709 |
precision: precision XLA related flag, the available options are: a)
|
710 |
lax.Precision.DEFAULT (better step time, but not precise) b)
|
711 |
lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
|
@@ -1167,7 +1290,7 @@ def distributed_shampoo(
|
|
1167 |
new_padded_statistics = []
|
1168 |
for stat in new_stats_flat:
|
1169 |
new_padded_statistics.extend(
|
1170 |
-
[
|
1171 |
)
|
1172 |
|
1173 |
# Create global stats
|
@@ -1388,7 +1511,7 @@ def distributed_shampoo(
|
|
1388 |
num_devices = lax.psum(1, batch_axis_name)
|
1389 |
num_statistics = len(statistics)
|
1390 |
# Pad statistics and exponents to next multiple of num_devices.
|
1391 |
-
packed_statistics = [
|
1392 |
to_pad = -num_statistics % num_devices
|
1393 |
packed_statistics.extend(
|
1394 |
[jnp.eye(max_size, dtype=packed_statistics[0].dtype) for _ in range(to_pad)]
|
@@ -1540,7 +1663,7 @@ def distributed_shampoo(
|
|
1540 |
# diagonals [d] f32
|
1541 |
# bucket_sizes [d] f32
|
1542 |
packed_quantized_statistics = [
|
1543 |
-
|
1544 |
]
|
1545 |
packed_quantized_diagonals = [
|
1546 |
pad_vector(stat.diagonal, max_size) for stat in statistics
|
@@ -1772,7 +1895,7 @@ def distributed_shampoo(
|
|
1772 |
"""
|
1773 |
num_statistics = len(statistics)
|
1774 |
to_pad = -num_statistics % num_devices_for_pjit
|
1775 |
-
padded_statistics = [
|
1776 |
padded_statistics.extend(
|
1777 |
[jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)]
|
1778 |
)
|
|
|
25 |
# Authors: Rohan Anil (rohananil at google dot com)
|
26 |
# & Vineet Gupta (vineet at google dot com)
|
27 |
#
|
|
|
28 |
"""Distributed Shampoo Implementation."""
|
29 |
|
30 |
import enum
|
31 |
import functools
|
32 |
import itertools
|
33 |
+
from typing import Any, List, NamedTuple, Tuple
|
34 |
|
35 |
import chex
|
36 |
import jax
|
|
|
42 |
from jax import lax
|
43 |
|
44 |
from .quantization_utils import QuantizedValue
|
45 |
+
from .symmetric_matrices import symmetric_matrices
|
46 |
|
47 |
# Dtype for inverse-pth root routine
|
48 |
# Switch to f64 if you have hardware that supports it. Enable the jax flag
|
|
|
141 |
|
142 |
|
143 |
def power_iteration(
|
144 |
+
matrix,
|
145 |
+
num_iters=100,
|
146 |
+
error_tolerance=1e-6,
|
147 |
+
precision=lax.Precision.HIGHEST,
|
148 |
):
|
149 |
r"""Power iteration algorithm.
|
150 |
|
|
|
159 |
matrix: the symmetric PSD matrix.
|
160 |
num_iters: Number of iterations.
|
161 |
error_tolerance: Iterative exit condition.
|
162 |
+
precision: precision XLA related flag, the available options are: a)
|
163 |
+
lax.Precision.DEFAULT (better step time, but not precise) b)
|
164 |
+
lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
|
165 |
+
(best possible precision, slowest)
|
166 |
|
167 |
Returns:
|
168 |
eigen vector, eigen value
|
|
|
199 |
return v_out, s_out
|
200 |
|
201 |
|
202 |
+
def mat_power(
|
203 |
+
mat_m,
|
204 |
+
p,
|
205 |
+
precision=lax.Precision.HIGHEST,
|
206 |
+
):
|
207 |
"""A simple matrix power method. M^p where p can be TracedValue."""
|
208 |
power = jnp.eye(mat_m.shape[0], dtype=_MAT_INV_PTH_ROOT_DTYPE)
|
209 |
|
|
|
252 |
num_iters: Maximum number of iterations.
|
253 |
ridge_epsilon: Ridge epsilon added to make the matrix positive definite.
|
254 |
error_tolerance: Error indicator, useful for early termination.
|
255 |
+
precision: precision XLA related flag, the available options are: a)
|
256 |
+
lax.Precision.DEFAULT (better step time, but not precise) b)
|
257 |
+
lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
|
258 |
+
(best possible precision, slowest)
|
259 |
|
260 |
Returns:
|
261 |
matrix^(-1/p)
|
262 |
"""
|
263 |
|
264 |
+
# If the input is not square, materialize it from the concatenated form.
|
265 |
+
if matrix.shape[0] != matrix.shape[1]:
|
266 |
+
matrix = symmetric_matrices.materialize_matrix_from_concat(matrix)
|
267 |
+
|
268 |
assert matrix.shape[0] == matrix.shape[1]
|
269 |
|
270 |
# We use _MAT_INV_PTH_ROOT_DTYPE for the matrix inverse pth root.
|
|
|
347 |
return resulting_shape
|
348 |
|
349 |
|
350 |
+
def pad_square_matrix(mat, max_size):
|
351 |
+
"""Pad a square matrix up to max_size.
|
352 |
|
353 |
Args:
|
354 |
mat: a matrix to pad.
|
|
|
357 |
Returns:
|
358 |
Given M returns [[M, 0], [0, I]]
|
359 |
"""
|
360 |
+
rows, cols = mat.shape
|
361 |
+
if rows != cols:
|
362 |
+
raise ValueError(
|
363 |
+
"Must have rows == cols, instead got " f"rows={rows}, cols={cols}"
|
364 |
+
)
|
365 |
+
if cols > max_size:
|
366 |
+
raise ValueError(
|
367 |
+
"Must have cols <= max_size. Instead got "
|
368 |
+
f"cols={cols}, max_size={max_size}."
|
369 |
+
)
|
370 |
+
if rows == max_size:
|
371 |
return mat
|
372 |
+
pad_size = max_size - rows
|
373 |
+
|
374 |
+
zs1 = jnp.zeros([rows, pad_size], dtype=mat.dtype)
|
375 |
+
zs2 = jnp.zeros([pad_size, rows], dtype=mat.dtype)
|
376 |
eye = jnp.eye(pad_size, dtype=mat.dtype)
|
377 |
mat = jnp.concatenate([mat, zs1], 1)
|
378 |
mat = jnp.concatenate([mat, jnp.concatenate([zs2, eye], 1)], 0)
|
379 |
return mat
|
380 |
|
381 |
|
382 |
+
def make_sliced_padding(
|
383 |
+
symmetric_block_size,
|
384 |
+
num_blocks,
|
385 |
+
starting_block,
|
386 |
+
dtype,
|
387 |
+
):
|
388 |
+
"""Returns padding for symmetric block matrix.
|
389 |
+
|
390 |
+
Specifically, the padding is given concatenated rectangular matrices
|
391 |
+
representing the lower-triangular rows below the starting block. For example,
|
392 |
+
if we want to pad the symmetric matrix
|
393 |
+
|
394 |
+
M = [[A, B^T]
|
395 |
+
[B, C]],
|
396 |
+
|
397 |
+
the desired output (in terms of the full matrix) with num_blocks = 4 is
|
398 |
+
|
399 |
+
M_padded = [[A, B^T, 0, 0]
|
400 |
+
[B, C, 0, 0]
|
401 |
+
[0, 0, I, 0]
|
402 |
+
0, 0, 0, I].
|
403 |
+
|
404 |
+
We would represent M as the block matrix mat = [A, B, C]. In this form, the
|
405 |
+
additional padding to provide has form [0, 0, I, 0, 0, 0, I] (only the lower
|
406 |
+
triangular parts in the third and fourth rows).
|
407 |
+
|
408 |
+
Args:
|
409 |
+
symmetric_block_size: The size of each block.
|
410 |
+
num_blocks: The total number of blocks.
|
411 |
+
starting_block: The block where to start the padding.
|
412 |
+
dtype: The type to use for the blocks.
|
413 |
+
"""
|
414 |
+
if starting_block == num_blocks:
|
415 |
+
return jnp.zeros(shape=(symmetric_block_size, 0), dtype=dtype)
|
416 |
+
|
417 |
+
blocks = []
|
418 |
+
for i in range(starting_block, num_blocks):
|
419 |
+
blocks.append(
|
420 |
+
jnp.zeros(
|
421 |
+
shape=(symmetric_block_size, symmetric_block_size * i), dtype=dtype
|
422 |
+
)
|
423 |
+
)
|
424 |
+
blocks.append(jnp.eye(symmetric_block_size, dtype=dtype))
|
425 |
+
return jnp.concatenate(blocks, axis=-1)
|
426 |
+
|
427 |
+
|
428 |
+
def pad_block_symmetric_matrix(
|
429 |
+
mat,
|
430 |
+
symmetric_block_size,
|
431 |
+
max_num_blocks,
|
432 |
+
):
|
433 |
+
"""Returns the padded blocked symmetric matrix.
|
434 |
+
|
435 |
+
The size of the padded matrix will be:
|
436 |
+
[symmetric_block_size, symmetric_block_size * max_num_blocks]
|
437 |
+
|
438 |
+
The input matrix can either:
|
439 |
+
- Be square with size less or equal to symmetric_block_size. In this case,
|
440 |
+
mat will first be padded to a square matrix of size symmetric_block_size,
|
441 |
+
and then be padded again up to the full size of the blocked matrix.
|
442 |
+
- Be a rectangle with number of rows equal to block size.
|
443 |
+
In this case, number of columns must be a multiple of number of rows, and
|
444 |
+
the ratio must correspond to a block representation of a symmetric matrix.
|
445 |
+
That is, the ratio must have form x * (x + 1) / 2. Here, x represents the
|
446 |
+
number of block rows represented by the matrix.
|
447 |
+
|
448 |
+
Args:
|
449 |
+
mat: The input block matrix.
|
450 |
+
symmetric_block_size: The size of blocks.
|
451 |
+
max_num_blocks: The largest number of blocks to pad to.
|
452 |
+
"""
|
453 |
+
rows, cols = mat.shape
|
454 |
+
if rows > symmetric_block_size:
|
455 |
+
raise ValueError(
|
456 |
+
"Must have rows <= symmetric_block_size. Instead got "
|
457 |
+
f"rows={rows}, symmetric_block_size={symmetric_block_size}."
|
458 |
+
)
|
459 |
+
if rows > cols:
|
460 |
+
raise ValueError(
|
461 |
+
"Must have rows <= cols, instead got " f"rows={rows}, cols={cols}."
|
462 |
+
)
|
463 |
+
if cols > symmetric_block_size * max_num_blocks:
|
464 |
+
raise ValueError(
|
465 |
+
"Must have cols <= symmetric_block_size * max_num_blocks "
|
466 |
+
f"Instead got cols={cols}, "
|
467 |
+
f"symmetric_block_size={symmetric_block_size}, "
|
468 |
+
f"max_num_blocks={max_num_blocks}."
|
469 |
+
)
|
470 |
+
if rows < symmetric_block_size:
|
471 |
+
mat = pad_square_matrix(mat, max_size=symmetric_block_size)
|
472 |
+
# Update rows and cols after possibly padding in pad_square_matrix.
|
473 |
+
rows, cols = mat.shape
|
474 |
+
assert rows == symmetric_block_size
|
475 |
+
assert cols % rows == 0
|
476 |
+
filled_blocks = cols // rows
|
477 |
+
padding_blocks = make_sliced_padding(
|
478 |
+
symmetric_block_size=symmetric_block_size,
|
479 |
+
num_blocks=symmetric_matrices.num_blocks_from_total_blocks(max_num_blocks),
|
480 |
+
starting_block=symmetric_matrices.num_blocks_from_total_blocks(filled_blocks),
|
481 |
+
dtype=mat.dtype,
|
482 |
+
)
|
483 |
+
return jnp.concatenate([mat, padding_blocks], axis=-1)
|
484 |
+
|
485 |
+
|
486 |
def pad_vector(vec, max_size):
|
487 |
"""Pad a vector to a max_size.
|
488 |
|
|
|
818 |
num_devices_for_pjit: Number of devices to parallelize over when using pjit.
|
819 |
shard_optimizer_states: Shard optimizer states to save memory in model
|
820 |
parallel training.
|
821 |
+
best_effort_memory_usage_reduction: Best effort memory usage reduction. -
|
822 |
+
diagonal_statistics -> jnp.bfloat16 - momentum buffers (2x) -> jnp.int8 -
|
|
|
823 |
statistics, preconditioners -> jnp.int16 + diagonals
|
824 |
inverse_failure_threshold: numerics are hard and inverses fail sometimes; we
|
825 |
determine that using this threshold.
|
826 |
moving_average_for_momentum: Whether to use moving average for momentum
|
827 |
instead of exponential moving average.
|
828 |
skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is
|
829 |
+
greater than this value.
|
830 |
+
clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful when
|
831 |
+
using RMSProp Grafting).
|
832 |
precision: precision XLA related flag, the available options are: a)
|
833 |
lax.Precision.DEFAULT (better step time, but not precise) b)
|
834 |
lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
|
|
|
1290 |
new_padded_statistics = []
|
1291 |
for stat in new_stats_flat:
|
1292 |
new_padded_statistics.extend(
|
1293 |
+
[pad_square_matrix(stat, max_size) for stat in stat.statistics]
|
1294 |
)
|
1295 |
|
1296 |
# Create global stats
|
|
|
1511 |
num_devices = lax.psum(1, batch_axis_name)
|
1512 |
num_statistics = len(statistics)
|
1513 |
# Pad statistics and exponents to next multiple of num_devices.
|
1514 |
+
packed_statistics = [pad_square_matrix(stat, max_size) for stat in statistics]
|
1515 |
to_pad = -num_statistics % num_devices
|
1516 |
packed_statistics.extend(
|
1517 |
[jnp.eye(max_size, dtype=packed_statistics[0].dtype) for _ in range(to_pad)]
|
|
|
1663 |
# diagonals [d] f32
|
1664 |
# bucket_sizes [d] f32
|
1665 |
packed_quantized_statistics = [
|
1666 |
+
pad_square_matrix(stat.quantized, max_size) for stat in statistics
|
1667 |
]
|
1668 |
packed_quantized_diagonals = [
|
1669 |
pad_vector(stat.diagonal, max_size) for stat in statistics
|
|
|
1895 |
"""
|
1896 |
num_statistics = len(statistics)
|
1897 |
to_pad = -num_statistics % num_devices_for_pjit
|
1898 |
+
padded_statistics = [pad_square_matrix(stat, max_size) for stat in statistics]
|
1899 |
padded_statistics.extend(
|
1900 |
[jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)]
|
1901 |
)
|
tools/train/scalable_shampoo/symmetric_matrices/symmetric_matrices.py
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
"""JAX Ops for symmetric matrices used by the Shampoo optimizer."""
|
17 |
|
18 |
import functools
|
19 |
-
from typing import Any, List, Sequence, Union
|
20 |
|
21 |
import jax
|
22 |
import jax.numpy as jnp
|
@@ -192,7 +192,7 @@ def materialize_matrix(symmetric_matrix):
|
|
192 |
@functools.partial(jax.jit, static_argnames=("num_blocks"))
|
193 |
def materialize_matrix_from_concat(
|
194 |
block_rows_concat,
|
195 |
-
num_blocks,
|
196 |
):
|
197 |
"""Returns a materialized symmetric matrix from concatenated slices.
|
198 |
|
@@ -200,7 +200,11 @@ def materialize_matrix_from_concat(
|
|
200 |
block_rows_concat: The matrix represented as the concatenated
|
201 |
lower-triangular blocks.
|
202 |
num_blocks: The number of block-rows used to represent the symmetric matrix.
|
|
|
203 |
"""
|
|
|
|
|
|
|
204 |
block_size = block_rows_concat.shape[-2]
|
205 |
|
206 |
block_rows = [
|
@@ -251,6 +255,28 @@ def update_sliced_rows(
|
|
251 |
)
|
252 |
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
def find_num_blocks(block_rows_concat):
|
255 |
"""Returns the number of (row) blocks representing the concatenated matrix.
|
256 |
|
@@ -270,11 +296,147 @@ def find_num_blocks(block_rows_concat):
|
|
270 |
# Compute the number of square blocks used to represent the matrix.
|
271 |
total_blocks = block_rows_concat.shape[-1] / block_rows_concat.shape[-2]
|
272 |
# Determine the number of block rows by inverting y = x*(x+1)/2.
|
273 |
-
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
raise ValueError(
|
276 |
-
"
|
277 |
-
"
|
278 |
)
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"""JAX Ops for symmetric matrices used by the Shampoo optimizer."""
|
17 |
|
18 |
import functools
|
19 |
+
from typing import Any, List, Optional, Sequence, Union
|
20 |
|
21 |
import jax
|
22 |
import jax.numpy as jnp
|
|
|
192 |
@functools.partial(jax.jit, static_argnames=("num_blocks"))
|
193 |
def materialize_matrix_from_concat(
|
194 |
block_rows_concat,
|
195 |
+
num_blocks=None,
|
196 |
):
|
197 |
"""Returns a materialized symmetric matrix from concatenated slices.
|
198 |
|
|
|
200 |
block_rows_concat: The matrix represented as the concatenated
|
201 |
lower-triangular blocks.
|
202 |
num_blocks: The number of block-rows used to represent the symmetric matrix.
|
203 |
+
If not specified, it is inferred from the shape of block_rows_concat.
|
204 |
"""
|
205 |
+
if num_blocks is None:
|
206 |
+
num_blocks = find_num_blocks(block_rows_concat)
|
207 |
+
|
208 |
block_size = block_rows_concat.shape[-2]
|
209 |
|
210 |
block_rows = [
|
|
|
255 |
)
|
256 |
|
257 |
|
258 |
+
def num_blocks_from_total_blocks(total_blocks):
|
259 |
+
"""Returns the number of blocks (i.e.
|
260 |
+
|
261 |
+
block rows) from the total blocks.
|
262 |
+
|
263 |
+
This is the inverse of the function x -> x*(x+1)/2.
|
264 |
+
|
265 |
+
For example, the matrix M = [[A, B^T], [B, C]] may be represented using a
|
266 |
+
total of 3 blocks ([A, B, C]). The number of corresponding block rows is 2.
|
267 |
+
|
268 |
+
Args:
|
269 |
+
total_blocks: The total blocks used to represent the matrix.
|
270 |
+
"""
|
271 |
+
num_blocks = np.round((np.sqrt(8 * total_blocks + 1) - 1) / 2).astype(np.int32)
|
272 |
+
if (num_blocks * (num_blocks + 1)) / 2 != total_blocks:
|
273 |
+
raise ValueError(
|
274 |
+
f"total_blocks={total_blocks} does not correspond to "
|
275 |
+
"a symmetric matrix. It must have the form total_blocks = x*(x+1)/2."
|
276 |
+
)
|
277 |
+
return num_blocks
|
278 |
+
|
279 |
+
|
280 |
def find_num_blocks(block_rows_concat):
|
281 |
"""Returns the number of (row) blocks representing the concatenated matrix.
|
282 |
|
|
|
296 |
# Compute the number of square blocks used to represent the matrix.
|
297 |
total_blocks = block_rows_concat.shape[-1] / block_rows_concat.shape[-2]
|
298 |
# Determine the number of block rows by inverting y = x*(x+1)/2.
|
299 |
+
return num_blocks_from_total_blocks(total_blocks)
|
300 |
+
|
301 |
+
|
302 |
+
@functools.partial(jax.jit, static_argnames=("block_size"))
|
303 |
+
def slice_symmetric_matrix(
|
304 |
+
mat,
|
305 |
+
block_size,
|
306 |
+
):
|
307 |
+
"""Returns sliced row blocks.
|
308 |
+
|
309 |
+
Args:
|
310 |
+
mat: A symmetric matrix.
|
311 |
+
block_size: The size of the row slices.
|
312 |
+
"""
|
313 |
+
num_rows = mat.shape[-2]
|
314 |
+
num_cols = mat.shape[-1]
|
315 |
+
if num_rows != num_cols:
|
316 |
+
raise ValueError("mat is not square.")
|
317 |
+
if num_rows % block_size != 0:
|
318 |
raise ValueError(
|
319 |
+
"block size does not evenly divide rows. "
|
320 |
+
f"num_rows={num_rows}, block_size={block_size}"
|
321 |
)
|
322 |
+
return SlicedSymmetricMatrix(
|
323 |
+
block_rows=[
|
324 |
+
mat[
|
325 |
+
Ellipsis,
|
326 |
+
i * block_size : (i + 1) * block_size,
|
327 |
+
0 : (i + 1) * block_size,
|
328 |
+
]
|
329 |
+
for i in range(num_rows // block_size)
|
330 |
+
]
|
331 |
+
)
|
332 |
+
|
333 |
+
|
334 |
+
@functools.partial(jax.jit, static_argnames=("block_size"))
|
335 |
+
def slice_symmetric_matrix_concat(
|
336 |
+
mat,
|
337 |
+
block_size,
|
338 |
+
):
|
339 |
+
"""Returns the concatenated sliced row blocks.
|
340 |
+
|
341 |
+
Args:
|
342 |
+
mat: A symmetric matrix.
|
343 |
+
block_size: The size of the row slices.
|
344 |
+
"""
|
345 |
+
sliced_symmetric_matrix = slice_symmetric_matrix(mat=mat, block_size=block_size)
|
346 |
+
return jnp.concatenate(sliced_symmetric_matrix.block_rows, axis=-1)
|
347 |
+
|
348 |
+
|
349 |
+
def sliced_matrix_diag(mat):
|
350 |
+
"""Returns the diagonal of the symmetric matrix.
|
351 |
+
|
352 |
+
Args:
|
353 |
+
mat: The symmetric matrix represented in concatenated block form.
|
354 |
+
"""
|
355 |
+
rows, cols = mat.shape
|
356 |
+
total_blocks = cols // rows
|
357 |
+
num_blocks = num_blocks_from_total_blocks(total_blocks)
|
358 |
+
diags = []
|
359 |
+
for i in range(num_blocks):
|
360 |
+
last_index = rows * ((i + 2) * (i + 1)) // 2
|
361 |
+
first_index = last_index - rows
|
362 |
+
diags.append(jnp.diag(mat[Ellipsis, first_index:last_index]))
|
363 |
+
return jnp.concatenate(diags, axis=-1)
|
364 |
+
|
365 |
+
|
366 |
+
def diag_as_concat(diag, block_size):
|
367 |
+
"""Returns the representation of a diagonal matrix in symmetric block form.
|
368 |
+
|
369 |
+
Args:
|
370 |
+
diag: The 1D array for the diagonals.
|
371 |
+
block_size: The size of blocks to use. Must divide the length of diag.
|
372 |
+
"""
|
373 |
+
assert len(diag.shape) == 1 # diag must be 1D.
|
374 |
+
assert len(diag) % block_size == 0
|
375 |
+
num_diag_blocks = len(diag) // block_size
|
376 |
+
blocks = []
|
377 |
+
for i in range(num_diag_blocks):
|
378 |
+
blocks.append(jnp.zeros(shape=(block_size, block_size * i), dtype=diag.dtype))
|
379 |
+
blocks.append(jnp.diag(diag[i * block_size : (i + 1) * block_size]))
|
380 |
+
return jnp.concatenate(blocks, axis=-1)
|
381 |
+
|
382 |
+
|
383 |
+
def row_abs_maxes(mat):
|
384 |
+
"""Returns the max of the absolute values of the rows of the full matrix.
|
385 |
+
|
386 |
+
For example the symmetric matrix M = [[1, 6], [6, 2]] is represented using
|
387 |
+
mat = [1, 6, 2] with block_size = 1. In this case the function returns the
|
388 |
+
aboslute row maxes of the original symmetric matrix, [6, 6].
|
389 |
+
|
390 |
+
Args:
|
391 |
+
mat: The symmetric matrix represented as the concatenated blocks.
|
392 |
+
"""
|
393 |
+
rows, cols = mat.shape
|
394 |
+
|
395 |
+
# Find col and row max for each block.
|
396 |
+
col_maxes = []
|
397 |
+
row_maxes = []
|
398 |
+
for i in range(cols // rows):
|
399 |
+
block = jnp.abs(mat[Ellipsis, i * rows : (i + 1) * rows])
|
400 |
+
col_maxes.append(jnp.max(block, axis=1))
|
401 |
+
row_maxes.append(jnp.max(block, axis=0))
|
402 |
+
|
403 |
+
# global row max from block maxes.
|
404 |
+
num_blocks = num_blocks_from_total_blocks(cols // rows)
|
405 |
+
maxes = []
|
406 |
+
for i in range(num_blocks):
|
407 |
+
maxes.append(
|
408 |
+
jnp.concatenate(
|
409 |
+
row_maxes[(i * (i + 1) // 2) : ((i + 2) * (i + 1) // 2)]
|
410 |
+
+ [
|
411 |
+
col_maxes[((j + 1) * (j + 2)) // 2 - (j - i + 1)]
|
412 |
+
for j in range(i + 1, num_blocks)
|
413 |
+
],
|
414 |
+
axis=-1,
|
415 |
+
)
|
416 |
+
)
|
417 |
+
|
418 |
+
return jnp.max(jnp.stack(maxes), axis=0)
|
419 |
+
|
420 |
+
|
421 |
+
def times_vector(mat, vec):
|
422 |
+
"""Returns the symmetric block-concatenated matrix multiplied by a vector.
|
423 |
+
|
424 |
+
Specifically, each value in the vector is multiplied by a row of the full
|
425 |
+
matrix. That is, the vector is broadcast and multiplied element-wise. Note
|
426 |
+
this would be the transpose of full_mat * vec if full_mat represented the full
|
427 |
+
symmetric matrix.
|
428 |
+
|
429 |
+
Args:
|
430 |
+
mat: The symmetric matrix represented as the concatenated blocks.
|
431 |
+
vec: The vector, having the same dimension as the materialized matrix.
|
432 |
+
"""
|
433 |
+
rows, cols = mat.shape
|
434 |
+
num_blocks = num_blocks_from_total_blocks(cols // rows)
|
435 |
+
multiplied = []
|
436 |
+
for i in range(num_blocks):
|
437 |
+
mat_block = mat[
|
438 |
+
Ellipsis, rows * ((i + 1) * i) // 2 : rows * ((i + 1) * (i + 2)) // 2
|
439 |
+
]
|
440 |
+
vec_block = vec[Ellipsis, rows * i : rows * (i + 1)]
|
441 |
+
multiplied.append(jnp.einsum("...ij,...i->ij", mat_block, vec_block))
|
442 |
+
return jnp.concatenate(multiplied, axis=-1)
|
tools/train/train.py
CHANGED
@@ -368,6 +368,12 @@ class TrainingArguments:
|
|
368 |
"help": "Whether to quantize optimizer (only supported with Distributed Shampoo)."
|
369 |
},
|
370 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
num_train_epochs: int = field(
|
373 |
default=3, metadata={"help": "Total number of training epochs to perform."}
|
@@ -450,6 +456,11 @@ class TrainingArguments:
|
|
450 |
metadata={"help": "Verify that TPU is not in use."},
|
451 |
)
|
452 |
|
|
|
|
|
|
|
|
|
|
|
453 |
mp_devices: Optional[int] = field(
|
454 |
default=1,
|
455 |
metadata={
|
@@ -500,6 +511,11 @@ class TrainingArguments:
|
|
500 |
f"Output directory ({self.output_dir}) already exists and is not empty."
|
501 |
"Use --overwrite_output_dir to overcome."
|
502 |
)
|
|
|
|
|
|
|
|
|
|
|
503 |
assert (
|
504 |
self.mp_devices > 0
|
505 |
), f"Number of devices for model parallelism must be > 0"
|
@@ -530,6 +546,12 @@ def main():
|
|
530 |
else:
|
531 |
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
532 |
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
# Make one log on every process with the configuration for debugging.
|
534 |
logging.basicConfig(
|
535 |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
@@ -748,8 +770,20 @@ def main():
|
|
748 |
graft_type=graft_type,
|
749 |
nesterov=False,
|
750 |
exponent_override=0,
|
751 |
-
statistics_partition_spec=PartitionSpec(
|
752 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
753 |
num_devices_for_pjit=training_args.dp_devices,
|
754 |
shard_optimizer_states=True,
|
755 |
inverse_failure_threshold=0.1,
|
@@ -917,7 +951,7 @@ def main():
|
|
917 |
|
918 |
# "vmap trick" avoids a crash when mp_devices > 1 (not sure why it happens)
|
919 |
# lead to better perf: see https://wandb.ai/dalle-mini/dalle-mini/reports/JAX-pmap-vs-pjit--VmlldzoxNDg1ODA2
|
920 |
-
use_vmap_trick =
|
921 |
|
922 |
# make grad_param_spec for vmap
|
923 |
if use_vmap_trick:
|
@@ -1145,7 +1179,8 @@ def main():
|
|
1145 |
self.log_time("train_per_log", delta_time, offset=False)
|
1146 |
|
1147 |
def log_time(self, key, duration, offset=True):
|
1148 |
-
|
|
|
1149 |
if offset:
|
1150 |
self.offset_time += duration
|
1151 |
|
@@ -1191,7 +1226,11 @@ def main():
|
|
1191 |
# ======================== Evaluating ==============================
|
1192 |
if training_args.do_eval:
|
1193 |
start_eval_time = time.perf_counter()
|
1194 |
-
eval_loader = dataset.dataloader(
|
|
|
|
|
|
|
|
|
1195 |
eval_steps = (
|
1196 |
len_eval_dataset // eval_batch_size_per_step
|
1197 |
if len_eval_dataset is not None
|
@@ -1353,10 +1392,12 @@ def main():
|
|
1353 |
metrics_logger.update_state_metrics(local_state)
|
1354 |
metrics_logger.log({})
|
1355 |
|
1356 |
-
#
|
|
|
|
|
1357 |
train_loader = dataset.dataloader(
|
1358 |
"train",
|
1359 |
-
|
1360 |
epoch,
|
1361 |
)
|
1362 |
# train
|
@@ -1373,12 +1414,12 @@ def main():
|
|
1373 |
|
1374 |
# set correct shape to batch
|
1375 |
# - add grad_step dim if gradient_accumulation_steps > 1
|
1376 |
-
# - split per dp device if not multi-host for vmap trick (does not work in multi-host)
|
1377 |
bs_shape = (
|
1378 |
-
(batch_size_per_node_per_grad_step,)
|
1379 |
if not use_vmap_trick
|
1380 |
else (
|
1381 |
jax.local_device_count()
|
|
|
1382 |
// training_args.mp_devices, # local dp devices
|
1383 |
training_args.per_device_train_batch_size,
|
1384 |
)
|
|
|
368 |
"help": "Whether to quantize optimizer (only supported with Distributed Shampoo)."
|
369 |
},
|
370 |
)
|
371 |
+
shard_shampoo_across: str = field(
|
372 |
+
default="dp",
|
373 |
+
metadata={
|
374 |
+
"help": "Whether to shard the optimizer across data devices (dp), model devices (mp) or both (2d)."
|
375 |
+
},
|
376 |
+
)
|
377 |
|
378 |
num_train_epochs: int = field(
|
379 |
default=3, metadata={"help": "Total number of training epochs to perform."}
|
|
|
456 |
metadata={"help": "Verify that TPU is not in use."},
|
457 |
)
|
458 |
|
459 |
+
use_vmap_trick: bool = field(
|
460 |
+
default=True,
|
461 |
+
metadata={"help": "Verify that TPU is not in use."},
|
462 |
+
)
|
463 |
+
|
464 |
mp_devices: Optional[int] = field(
|
465 |
default=1,
|
466 |
metadata={
|
|
|
511 |
f"Output directory ({self.output_dir}) already exists and is not empty."
|
512 |
"Use --overwrite_output_dir to overcome."
|
513 |
)
|
514 |
+
assert self.shard_shampoo_across in [
|
515 |
+
"dp",
|
516 |
+
"mp",
|
517 |
+
"2d",
|
518 |
+
], f"Shard shampoo across {self.shard_shampoo_across} not supported."
|
519 |
assert (
|
520 |
self.mp_devices > 0
|
521 |
), f"Number of devices for model parallelism must be > 0"
|
|
|
546 |
else:
|
547 |
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
548 |
|
549 |
+
# check arguments
|
550 |
+
if training_args.mp_devices > jax.local_device_count():
|
551 |
+
assert (
|
552 |
+
data_args.seed_dataset is not None
|
553 |
+
), "Seed dataset must be provided when model is split over multiple hosts"
|
554 |
+
|
555 |
# Make one log on every process with the configuration for debugging.
|
556 |
logging.basicConfig(
|
557 |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
|
770 |
graft_type=graft_type,
|
771 |
nesterov=False,
|
772 |
exponent_override=0,
|
773 |
+
statistics_partition_spec=PartitionSpec(
|
774 |
+
None, training_args.shard_shampoo_across, None
|
775 |
+
)
|
776 |
+
if training_args.shard_shampoo_across != "2d"
|
777 |
+
else PartitionSpec(None, "dp", "mp"),
|
778 |
+
preconditioner_partition_spec=PartitionSpec(
|
779 |
+
training_args.shard_shampoo_across, None, None
|
780 |
+
)
|
781 |
+
if training_args.shard_shampoo_across != "2d"
|
782 |
+
else PartitionSpec(
|
783 |
+
"mp" if training_args.mp_devices > training_args.dp_devices else "dp",
|
784 |
+
None,
|
785 |
+
None,
|
786 |
+
),
|
787 |
num_devices_for_pjit=training_args.dp_devices,
|
788 |
shard_optimizer_states=True,
|
789 |
inverse_failure_threshold=0.1,
|
|
|
951 |
|
952 |
# "vmap trick" avoids a crash when mp_devices > 1 (not sure why it happens)
|
953 |
# lead to better perf: see https://wandb.ai/dalle-mini/dalle-mini/reports/JAX-pmap-vs-pjit--VmlldzoxNDg1ODA2
|
954 |
+
use_vmap_trick = training_args.use_vmap_trick
|
955 |
|
956 |
# make grad_param_spec for vmap
|
957 |
if use_vmap_trick:
|
|
|
1179 |
self.log_time("train_per_log", delta_time, offset=False)
|
1180 |
|
1181 |
def log_time(self, key, duration, offset=True):
|
1182 |
+
if jax.process_index() == 0:
|
1183 |
+
wandb.log({f"time/{key}": duration, **self.state_dict})
|
1184 |
if offset:
|
1185 |
self.offset_time += duration
|
1186 |
|
|
|
1226 |
# ======================== Evaluating ==============================
|
1227 |
if training_args.do_eval:
|
1228 |
start_eval_time = time.perf_counter()
|
1229 |
+
eval_loader = dataset.dataloader(
|
1230 |
+
"eval",
|
1231 |
+
eval_batch_size_per_step
|
1232 |
+
* max(1, training_args.mp_devices // jax.local_device_count()),
|
1233 |
+
)
|
1234 |
eval_steps = (
|
1235 |
len_eval_dataset // eval_batch_size_per_step
|
1236 |
if len_eval_dataset is not None
|
|
|
1392 |
metrics_logger.update_state_metrics(local_state)
|
1393 |
metrics_logger.log({})
|
1394 |
|
1395 |
+
# load data - may be replicated on multiple nodes
|
1396 |
+
node_groups = max(1, training_args.mp_devices // jax.local_device_count())
|
1397 |
+
loader_bs = batch_size_per_node * node_groups
|
1398 |
train_loader = dataset.dataloader(
|
1399 |
"train",
|
1400 |
+
loader_bs,
|
1401 |
epoch,
|
1402 |
)
|
1403 |
# train
|
|
|
1414 |
|
1415 |
# set correct shape to batch
|
1416 |
# - add grad_step dim if gradient_accumulation_steps > 1
|
|
|
1417 |
bs_shape = (
|
1418 |
+
(batch_size_per_node_per_grad_step * node_groups,)
|
1419 |
if not use_vmap_trick
|
1420 |
else (
|
1421 |
jax.local_device_count()
|
1422 |
+
* node_groups
|
1423 |
// training_args.mp_devices, # local dp devices
|
1424 |
training_args.per_device_train_batch_size,
|
1425 |
)
|