pez-dispenser / open_clip /transformer.py
ywen's picture
initial commit
2f43921
raw
history blame
17.6 kB
from collections import OrderedDict
import math
from typing import Callable, Optional, Sequence
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.checkpoint import checkpoint
from .utils import to_2tuple
class LayerNormFp32(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(orig_type)
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
return x.to(orig_type)
class QuickGELU(nn.Module):
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class PatchDropout(nn.Module):
"""
https://arxiv.org/abs/2212.00794
"""
def __init__(self, prob, exclude_first_token=True):
super().__init__()
assert 0 <= prob < 1.
self.prob = prob
self.exclude_first_token = exclude_first_token # exclude CLS token
def forward(self, x):
if not self.training or self.prob == 0.:
return x
if self.exclude_first_token:
cls_tokens, x = x[:, :1], x[:, 1:]
else:
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
batch = x.size()[0]
num_tokens = x.size()[1]
batch_indices = torch.arange(batch)
batch_indices = batch_indices[..., None]
keep_prob = 1 - self.prob
num_patches_keep = max(1, int(num_tokens * keep_prob))
rand = torch.randn(batch, num_tokens)
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
x = x[batch_indices, patch_indices_keep]
if self.exclude_first_token:
x = torch.cat((cls_tokens, x), dim=1)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=True,
scaled_cosine=False,
scale_heads=False,
logit_scale_max=math.log(1. / 0.01),
attn_drop=0.,
proj_drop=0.
):
super().__init__()
self.scaled_cosine = scaled_cosine
self.scale_heads = scale_heads
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.logit_scale_max = logit_scale_max
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
if qkv_bias:
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
else:
self.in_proj_bias = None
if self.scaled_cosine:
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
else:
self.logit_scale = None
self.attn_drop = nn.Dropout(attn_drop)
if self.scale_heads:
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
else:
self.head_scale = None
self.out_proj = nn.Linear(dim, dim)
self.out_drop = nn.Dropout(proj_drop)
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
L, N, C = x.shape
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
if self.logit_scale is not None:
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
attn = attn.view(N, self.num_heads, L, L) * logit_scale
attn = attn.view(-1, L, L)
else:
q = q * self.scale
attn = torch.bmm(q, k.transpose(-1, -2))
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
attn_mask = new_attn_mask
attn += attn_mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = torch.bmm(attn, v)
if self.head_scale is not None:
x = x.view(N, self.num_heads, L, C) * self.head_scale
x = x.view(-1, L, C)
x = x.transpose(0, 1).reshape(L, N, C)
x = self.out_proj(x)
x = self.out_drop(x)
return x
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
):
super().__init__()
self.ln_1 = norm_layer(d_model)
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
self.ln_2 = norm_layer(d_model)
mlp_width = int(d_model * mlp_ratio)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, mlp_width)),
("gelu", act_layer()),
("c_proj", nn.Linear(mlp_width, d_model))
]))
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask))
x = x + self.ls_2(self.mlp(self.ln_2(x)))
return x
class CustomResidualAttentionBlock(nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
scale_cosine_attn: bool = False,
scale_heads: bool = False,
scale_attn: bool = False,
scale_fc: bool = False,
):
super().__init__()
self.ln_1 = norm_layer(d_model)
self.attn = Attention(
d_model, n_head,
scaled_cosine=scale_cosine_attn,
scale_heads=scale_heads,
)
self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity()
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
self.ln_2 = norm_layer(d_model)
mlp_width = int(d_model * mlp_ratio)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, mlp_width)),
('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()),
("gelu", act_layer()),
("c_proj", nn.Linear(mlp_width, d_model))
]))
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
x = x + self.ls_1(self.ln_attn(self.attn(self.ln_1(x), attn_mask=attn_mask)))
x = x + self.ls_2(self.mlp(self.ln_2(x)))
return x
class Transformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
):
super().__init__()
self.width = width
self.layers = layers
self.grad_checkpointing = False
self.resblocks = nn.ModuleList([
ResidualAttentionBlock(
width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer)
for _ in range(layers)
])
def get_cast_dtype(self) -> torch.dtype:
return self.resblocks[0].mlp.c_fc.weight.dtype
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
for r in self.resblocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
class VisionTransformer(nn.Module):
def __init__(
self,
image_size: int,
patch_size: int,
width: int,
layers: int,
heads: int,
mlp_ratio: float,
ls_init_value: float = None,
global_average_pool: bool = False,
output_dim: int = 512,
patch_dropout: float = 0.,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
):
super().__init__()
self.image_size = to_2tuple(image_size)
self.patch_size = to_2tuple(patch_size)
self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1])
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
self.ln_pre = norm_layer(width)
self.transformer = Transformer(
width,
layers,
heads,
mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
)
self.global_average_pool = global_average_pool
self.ln_post = norm_layer(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
self.init_parameters()
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
for param in self.parameters():
param.requires_grad = False
if unlocked_groups != 0:
groups = [
[
self.conv1,
self.class_embedding,
self.positional_embedding,
self.ln_pre,
],
*self.transformer.resblocks[:-1],
[
self.transformer.resblocks[-1],
self.ln_post,
],
self.proj,
]
def _unlock(x):
if isinstance(x, Sequence):
for g in x:
_unlock(g)
else:
if isinstance(x, torch.nn.Parameter):
x.requires_grad = True
else:
for p in x.parameters():
p.requires_grad = True
_unlock(groups[-unlocked_groups:])
def init_parameters(self):
# FIXME OpenAI CLIP did not define an init for the VisualTransformer
# TODO experiment if default PyTorch init, below, or alternate init is best.
# nn.init.normal_(self.class_embedding, std=self.scale)
# nn.init.normal_(self.positional_embedding, std=self.scale)
#
# proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
# attn_std = self.transformer.width ** -0.5
# fc_std = (2 * self.transformer.width) ** -0.5
# for block in self.transformer.resblocks:
# nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
# nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
# nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
# nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
#
# if self.text_projection is not None:
# nn.init.normal_(self.text_projection, std=self.scale)
pass
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.transformer.grad_checkpointing = enable
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat(
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
x = self.patch_dropout(x)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
if self.global_average_pool:
x = x.mean(dim=1)
else:
x = x[:, 0]
x = self.ln_post(x)
if self.proj is not None:
x = x @ self.proj
return x
class TextTransformer(nn.Module):
def __init__(
self,
context_length: int = 77,
vocab_size: int = 49408,
width: int = 512,
heads: int = 8,
layers: int = 12,
ls_init_value: float = None,
output_dim: int = 512,
act_layer: Callable = nn.GELU,
norm_layer: Callable = LayerNorm,
):
super().__init__()
self.context_length = context_length
self.vocab_size = vocab_size
self.width = width
self.output_dim = output_dim
self.token_embedding = nn.Embedding(vocab_size, width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
self.transformer = Transformer(
width=width,
layers=layers,
heads=heads,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
)
self.ln_final = norm_layer(width)
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
self.init_parameters()
def init_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.transformer.grad_checkpointing = enable
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def forward(self, text):
cast_dtype = self.transformer.get_cast_dtype()
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.to(cast_dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x, attn_mask=self.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x