tommaso1288 commited on
Commit
cdf8921
·
1 Parent(s): 81917a3

First commit - code refactoring

Browse files
README.md CHANGED
@@ -5,7 +5,7 @@ colorFrom: indigo
5
  colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 5.25.2
8
- app_file: app.py
9
  pinned: false
10
  hf_oauth: true
11
  # optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
 
5
  colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 5.25.2
8
+ app_file: main.py
9
  pinned: false
10
  hf_oauth: true
11
  # optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
app.py DELETED
@@ -1,196 +0,0 @@
1
- import os
2
- import gradio as gr
3
- import requests
4
- import inspect
5
- import pandas as pd
6
-
7
- # (Keep Constants as is)
8
- # --- Constants ---
9
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
-
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
-
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
-
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
- try:
43
- agent = BasicAgent()
44
- except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
-
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
- try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
- try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
- except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
-
90
- if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
-
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
- try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
- )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
-
143
- # --- Build Gradio Interface using Blocks ---
144
- with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
- """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
- )
160
-
161
- gr.LoginButton()
162
-
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
-
174
- if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,2 +1,6 @@
1
- gradio
2
- requests
 
 
 
 
 
1
+ gradio~=5.26.0
2
+ gradio[oauth]
3
+ requests~=2.32.3
4
+ smolagents~=1.13.0
5
+ python-dotenv~=1.1.0
6
+ pandas~=2.2.3
src/__init__.py ADDED
File without changes
src/agent/__init__.py ADDED
File without changes
src/agent/base_agent.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ class BasicAgent:
2
+ def __init__(self):
3
+ print("BasicAgent initialized.")
4
+
5
+ def __call__(self, question: str) -> str:
6
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
7
+ fixed_answer = "This is a default answer."
8
+ print(f"Agent returning fixed answer: {fixed_answer}")
9
+ return fixed_answer
src/core/__init__.py ADDED
File without changes
src/core/evaluator.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+
4
+ from rest_clients.hs_evaluator_client import HsEvaluatorClient
5
+ from src.agent.base_agent import BasicAgent
6
+
7
+
8
+ class Evaluator:
9
+
10
+ def __init__(self, profile):
11
+ self.profile = profile
12
+ self.username = profile.username if profile else None
13
+ self.space_id = os.getenv("SPACE_ID")
14
+ self.agent = BasicAgent()
15
+ self.hs_evaluator_client: HsEvaluatorClient | None = None
16
+
17
+ def run_and_submit(self):
18
+ if not self.username:
19
+ return "Please Login to Hugging Face with the button.", None
20
+
21
+ questions = self.get_hs_evaluator_client().fetch_questions()
22
+ if not questions:
23
+ return "Fetched questions list is empty or invalid format.", None
24
+
25
+ results_log, answers_payload = self._run_agent(questions)
26
+ if not answers_payload:
27
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
28
+
29
+ return self.get_hs_evaluator_client().submit_answers(answers_payload, results_log)
30
+
31
+ def _run_agent(self, questions):
32
+ results_log = []
33
+ answers_payload = []
34
+ for item in questions:
35
+ task_id = item.get("task_id")
36
+ question_text = item.get("question")
37
+ if not task_id or question_text is None:
38
+ continue
39
+ try:
40
+ submitted_answer = self.agent(question_text)
41
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
42
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
43
+ except Exception as e:
44
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
45
+ return results_log, answers_payload
46
+
47
+ def get_hs_evaluator_client(self):
48
+ if not self.hs_evaluator_client:
49
+ self.hs_evaluator_client = HsEvaluatorClient(self.username, self.space_id)
50
+ return self.hs_evaluator_client
src/main.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from src.ui.App import App
2
+
3
+ if __name__ == "__main__":
4
+ app = App()
5
+ app.run()
src/rest_clients/__init__.py ADDED
File without changes
src/rest_clients/hs_evaluator_client.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import requests
3
+
4
+
5
+ class HsEvaluatorClient:
6
+
7
+ def __init__(self, username, space_id):
8
+ self.space_id = space_id
9
+ self.username = username
10
+ self.base_url = "https://agents-course-unit4-scoring.hf.space"
11
+
12
+ def fetch_questions(self):
13
+ try:
14
+ response = requests.get(f"{self.base_url}/questions", timeout=15)
15
+ response.raise_for_status()
16
+ return response.json()
17
+ except Exception as e:
18
+ print(f"Error fetching questions: {e}")
19
+ return None
20
+
21
+ def submit_answers(self, answers_payload, results_log):
22
+ agent_code = f"https://huggingface.co/spaces/{self.space_id}/tree/main"
23
+ submission_data = {
24
+ "username": self.username.strip(),
25
+ "agent_code": agent_code,
26
+ "answers": answers_payload
27
+ }
28
+ try:
29
+ response = requests.post(f"{self.base_url}/submit", json=submission_data, timeout=60)
30
+ response.raise_for_status()
31
+ result_data = response.json()
32
+ final_status = (
33
+ f"Submission Successful!\n"
34
+ f"User: {result_data.get('username')}\n"
35
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
36
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
37
+ f"Message: {result_data.get('message', 'No message received.')}"
38
+ )
39
+ return final_status, pd.DataFrame(results_log)
40
+ except Exception as e:
41
+ return f"Submission Failed: {e}", pd.DataFrame(results_log)
src/rest_clients/open_weather_client.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import requests
3
+ from dotenv import load_dotenv
4
+
5
+ class OpenWeatherClient:
6
+
7
+ def __init__(self):
8
+ load_dotenv()
9
+ self.api_key = os.getenv("OPEN_WEATHER_TOKEN")
10
+ self.base_url = "http://api.openweathermap.org/data/2.5/weather"
11
+
12
+ def get_weather(self, location: str):
13
+ params = {
14
+ "q": location,
15
+ "appid": self.api_key,
16
+ "units": "metric"
17
+ }
18
+ try:
19
+ response = requests.get(self.base_url, params=params)
20
+ response.raise_for_status()
21
+ weather_data = response.json()
22
+
23
+ condition = weather_data["weather"][0]["description"]
24
+ temp_c = weather_data["main"]["temp"]
25
+ return {
26
+ "location": location,
27
+ "condition": condition.capitalize(),
28
+ "temperature": f"{temp_c}°C"
29
+ }
30
+ except requests.exceptions.RequestException as e:
31
+ return {"error": f"Failed to fetch weather data: {e}"}
src/tools/__init__.py ADDED
File without changes
src/tools/external_tools.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from smolagents import DuckDuckGoSearchTool
2
+
3
+
4
+ duck_duck_go_search_tool = DuckDuckGoSearchTool()
5
+
6
+
src/tools/weater_info_tool.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from smolagents import Tool
2
+
3
+ from rest_clients.open_weather_client import OpenWeatherClient
4
+
5
+
6
+ class WeatherInfoTool(Tool):
7
+ name = "weather_info"
8
+ description = "Fetches real weather information for a given location using OpenWeatherMap."
9
+ inputs = {
10
+ "location": {
11
+ "type": "string",
12
+ "description": "The location to get weather information for."
13
+ }
14
+ }
15
+ output_type = "string"
16
+
17
+ def __init__(self, *args, **kwargs):
18
+ super().__init__(*args, **kwargs)
19
+ self.weather_client = OpenWeatherClient()
20
+
21
+ def forward(self, location: str):
22
+ return self.weather_client.get_weather(location)
src/ui/App.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from src.core.evaluator import Evaluator
3
+
4
+ class App:
5
+ def __init__(self):
6
+ self.interface = gr.Blocks()
7
+ self._build_interface()
8
+
9
+ def _build_interface(self):
10
+ with self.interface:
11
+ gr.Markdown("# Basic Agent Evaluation Runner")
12
+ gr.Markdown("Follow instructions to run and evaluate the agent.")
13
+ gr.LoginButton()
14
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
15
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
16
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
17
+
18
+ run_button.click(
19
+ fn=App.evaluate_agent,
20
+ outputs=[status_output, results_table]
21
+ )
22
+
23
+ @staticmethod
24
+ def evaluate_agent(profile: gr.OAuthProfile | None):
25
+ evaluator = Evaluator(profile)
26
+ return evaluator.run_and_submit()
27
+
28
+ def run(self):
29
+ print("Launching Gradio Interface...")
30
+ self.interface.launch(debug=True, share=False)
src/ui/__init__.py ADDED
File without changes