tommy24 commited on
Commit
1250d8b
·
1 Parent(s): e50c7bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -45
app.py CHANGED
@@ -26,8 +26,13 @@
26
  # with open("labels.txt", "r") as file:
27
  # labels = file.read().splitlines()
28
 
29
- # def classify(Textbox, Image, Textbox2, Textbox3):
 
 
 
 
30
  # if Textbox3 == code:
 
31
  # if Image is not None:
32
  # output = []
33
  # image_data = np.array(Image)
@@ -50,17 +55,8 @@
50
  # Textbox2 = Textbox2.split(",")
51
  # Textbox2_edited = [x.strip() for x in Textbox2]
52
  # Textbox2_edited = list(Textbox2_edited)
53
- # Textbox2_edited.append(Textbox)
54
- # messages = [
55
- # {"role": "system", "content": system},
56
- # ]
57
- # print("Messages",messages)
58
-
59
- # # for i in Textbox2_edited:
60
- # # messages.append(
61
- # # {"role": "user", "content": i}
62
- # # )
63
- # print("messages after appending:", messages)
64
 
65
  # for i, label in enumerate(labels):
66
  # prediction_value = float(prediction[0][i])
@@ -73,27 +69,30 @@
73
 
74
  # if max_label_index is not None:
75
  # max_label = labels[max_label_index].split(' ', 1)[1]
76
- # print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
77
-
78
- # time.sleep(1)
79
- # print("\nWays to dispose of this waste: " + max_label)
80
- # messages.append({"role": "user", "content": Textbox})
81
- # messages.append({"role": "user", "content": content + " " + max_label})
82
 
83
- # headers = {
84
- # "Content-Type": "application/json",
85
- # "Authorization": f"Bearer {auth}"
86
- # }
87
 
88
- # response = requests.post(host, headers=headers, json={
89
- # "messages":messages,
90
- # "model":model_llm
91
- # }).json()
92
-
93
- # reply = response["choices"][0]["message"]["content"]
94
- # messages.append({"role": "assistant", "content": reply})
95
-
96
- # output.append({"Mode":"Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
 
 
 
 
 
 
 
97
 
98
  # return output
99
 
@@ -104,20 +103,17 @@
104
  # Textbox2 = Textbox2.split(",")
105
  # Textbox2_edited = [x.strip() for x in Textbox2]
106
  # Textbox2_edited = list(Textbox2_edited)
107
- # Textbox2_edited.append(Textbox)
108
- # messages = [
109
- # {"role": "system", "content": system},
110
- # ]
111
- # print("Messages",messages)
112
-
113
  # for i in Textbox2_edited:
114
  # messages.append(
115
  # {"role": "user", "content": i}
116
- # )
 
117
  # print("messages after appending:", messages)
118
 
119
  # time.sleep(1)
120
- # messages.append({"role": "user", "content": Textbox})
121
 
122
  # headers = {
123
  # "Content-Type": "application/json",
@@ -125,20 +121,20 @@
125
  # }
126
 
127
  # response = requests.post(host, headers=headers, json={
128
- # "messages":messages,
129
- # "model":model_llm
130
  # }).json()
131
 
132
  # reply = response["choices"][0]["message"]["content"]
133
  # messages.append({"role": "assistant", "content": reply})
134
 
135
- # output.append({"Mode":"Chat","content": reply})
136
 
137
  # return output
138
 
139
  # else:
140
  # return "Unauthorized"
141
-
142
  # user_inputs = [
143
  # gr.Textbox(label="User Input", type="text"),
144
  # gr.Image(),
@@ -169,6 +165,7 @@ content = os.environ.get("content")
169
  state = os.environ.get("state")
170
  system = os.environ.get("system")
171
  auth = os.environ.get("auth")
 
172
  data = None
173
  model = None
174
  image = None
@@ -187,11 +184,19 @@ messages = [
187
  {"role": "system", "content": system}
188
  ]
189
 
190
- def classify(UserInput, Image, Textbox2, Textbox3):
191
  if Textbox3 == code:
192
  print("Image: ", Image)
193
  if Image is not None:
194
  output = []
 
 
 
 
 
 
 
 
195
  image_data = np.array(Image)
196
  image_data = cv.resize(image_data, (224, 224))
197
  image_array = np.asarray(image_data)
@@ -293,8 +298,9 @@ def classify(UserInput, Image, Textbox2, Textbox3):
293
  return "Unauthorized"
294
 
295
  user_inputs = [
 
296
  gr.Textbox(label="User Input", type="text"),
297
- gr.Image(),
298
  gr.Textbox(label="Textbox2", type="text"),
299
  gr.Textbox(label="Textbox3", type="password")
300
  ]
 
26
  # with open("labels.txt", "r") as file:
27
  # labels = file.read().splitlines()
28
 
29
+ # messages = [
30
+ # {"role": "system", "content": system}
31
+ # ]
32
+
33
+ # def classify(UserInput, Image, Textbox2, Textbox3):
34
  # if Textbox3 == code:
35
+ # print("Image: ", Image)
36
  # if Image is not None:
37
  # output = []
38
  # image_data = np.array(Image)
 
55
  # Textbox2 = Textbox2.split(",")
56
  # Textbox2_edited = [x.strip() for x in Textbox2]
57
  # Textbox2_edited = list(Textbox2_edited)
58
+ # Textbox2_edited.append(UserInput)
59
+ # messages.append({"role": "user", "content": UserInput})
 
 
 
 
 
 
 
 
 
60
 
61
  # for i, label in enumerate(labels):
62
  # prediction_value = float(prediction[0][i])
 
69
 
70
  # if max_label_index is not None:
71
  # max_label = labels[max_label_index].split(' ', 1)[1]
72
+ # max_rounded_prediction = round(max_prediction_value, 2)
73
+ # print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
 
 
 
 
74
 
75
+ # time.sleep(1)
76
+ # if max_rounded_prediction > 0.5:
77
+ # print("\nWays to dispose of this waste: " + max_label)
78
+ # messages.append({"role": "user", "content": content + " " + max_label})
79
 
80
+ # headers = {
81
+ # "Content-Type": "application/json",
82
+ # "Authorization": f"Bearer {auth}"
83
+ # }
84
+
85
+ # response = requests.post(host, headers=headers, json={
86
+ # "messages": messages,
87
+ # "model": model_llm
88
+ # }).json()
89
+
90
+ # reply = response["choices"][0]["message"]["content"]
91
+ # messages.append({"role": "assistant", "content": reply})
92
+
93
+ # output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
94
+ # elif max_rounded_prediction < 0.5:
95
+ # output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
96
 
97
  # return output
98
 
 
103
  # Textbox2 = Textbox2.split(",")
104
  # Textbox2_edited = [x.strip() for x in Textbox2]
105
  # Textbox2_edited = list(Textbox2_edited)
106
+ # Textbox2_edited.append(UserInput)
107
+
 
 
 
 
108
  # for i in Textbox2_edited:
109
  # messages.append(
110
  # {"role": "user", "content": i}
111
+ # )
112
+
113
  # print("messages after appending:", messages)
114
 
115
  # time.sleep(1)
116
+ # messages.append({"role": "user", "content": UserInput})
117
 
118
  # headers = {
119
  # "Content-Type": "application/json",
 
121
  # }
122
 
123
  # response = requests.post(host, headers=headers, json={
124
+ # "messages": messages,
125
+ # "model": model_llm
126
  # }).json()
127
 
128
  # reply = response["choices"][0]["message"]["content"]
129
  # messages.append({"role": "assistant", "content": reply})
130
 
131
+ # output.append({"Mode": "Chat", "content": reply})
132
 
133
  # return output
134
 
135
  # else:
136
  # return "Unauthorized"
137
+
138
  # user_inputs = [
139
  # gr.Textbox(label="User Input", type="text"),
140
  # gr.Image(),
 
165
  state = os.environ.get("state")
166
  system = os.environ.get("system")
167
  auth = os.environ.get("auth")
168
+ auth2 = os.environ.get("auth2")
169
  data = None
170
  model = None
171
  image = None
 
184
  {"role": "system", "content": system}
185
  ]
186
 
187
+ def classify(platform,UserInput, Image, Textbox2, Textbox3):
188
  if Textbox3 == code:
189
  print("Image: ", Image)
190
  if Image is not None:
191
  output = []
192
+ headers = {
193
+ "Authorization": f"Bearer {auth2}"
194
+ }
195
+ if platform == "wh":
196
+ get_image = requests.get(image, headers=headers)
197
+ print(get_image.content)
198
+ elif platform == "web":
199
+ print("WEB")
200
  image_data = np.array(Image)
201
  image_data = cv.resize(image_data, (224, 224))
202
  image_array = np.asarray(image_data)
 
298
  return "Unauthorized"
299
 
300
  user_inputs = [
301
+ gr.Textbox(label="Platform", type="text"),
302
  gr.Textbox(label="User Input", type="text"),
303
+ gr.Textbox(label="Image", type="text"),
304
  gr.Textbox(label="Textbox2", type="text"),
305
  gr.Textbox(label="Textbox3", type="password")
306
  ]