Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -26,8 +26,13 @@
|
|
26 |
# with open("labels.txt", "r") as file:
|
27 |
# labels = file.read().splitlines()
|
28 |
|
29 |
-
#
|
|
|
|
|
|
|
|
|
30 |
# if Textbox3 == code:
|
|
|
31 |
# if Image is not None:
|
32 |
# output = []
|
33 |
# image_data = np.array(Image)
|
@@ -50,17 +55,8 @@
|
|
50 |
# Textbox2 = Textbox2.split(",")
|
51 |
# Textbox2_edited = [x.strip() for x in Textbox2]
|
52 |
# Textbox2_edited = list(Textbox2_edited)
|
53 |
-
# Textbox2_edited.append(
|
54 |
-
# messages
|
55 |
-
# {"role": "system", "content": system},
|
56 |
-
# ]
|
57 |
-
# print("Messages",messages)
|
58 |
-
|
59 |
-
# # for i in Textbox2_edited:
|
60 |
-
# # messages.append(
|
61 |
-
# # {"role": "user", "content": i}
|
62 |
-
# # )
|
63 |
-
# print("messages after appending:", messages)
|
64 |
|
65 |
# for i, label in enumerate(labels):
|
66 |
# prediction_value = float(prediction[0][i])
|
@@ -73,27 +69,30 @@
|
|
73 |
|
74 |
# if max_label_index is not None:
|
75 |
# max_label = labels[max_label_index].split(' ', 1)[1]
|
76 |
-
#
|
77 |
-
|
78 |
-
# time.sleep(1)
|
79 |
-
# print("\nWays to dispose of this waste: " + max_label)
|
80 |
-
# messages.append({"role": "user", "content": Textbox})
|
81 |
-
# messages.append({"role": "user", "content": content + " " + max_label})
|
82 |
|
83 |
-
#
|
84 |
-
#
|
85 |
-
# "
|
86 |
-
#
|
87 |
|
88 |
-
#
|
89 |
-
#
|
90 |
-
#
|
91 |
-
#
|
92 |
-
|
93 |
-
#
|
94 |
-
#
|
95 |
-
|
96 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
# return output
|
99 |
|
@@ -104,20 +103,17 @@
|
|
104 |
# Textbox2 = Textbox2.split(",")
|
105 |
# Textbox2_edited = [x.strip() for x in Textbox2]
|
106 |
# Textbox2_edited = list(Textbox2_edited)
|
107 |
-
# Textbox2_edited.append(
|
108 |
-
|
109 |
-
# {"role": "system", "content": system},
|
110 |
-
# ]
|
111 |
-
# print("Messages",messages)
|
112 |
-
|
113 |
# for i in Textbox2_edited:
|
114 |
# messages.append(
|
115 |
# {"role": "user", "content": i}
|
116 |
-
#
|
|
|
117 |
# print("messages after appending:", messages)
|
118 |
|
119 |
# time.sleep(1)
|
120 |
-
# messages.append({"role": "user", "content":
|
121 |
|
122 |
# headers = {
|
123 |
# "Content-Type": "application/json",
|
@@ -125,20 +121,20 @@
|
|
125 |
# }
|
126 |
|
127 |
# response = requests.post(host, headers=headers, json={
|
128 |
-
# "messages":messages,
|
129 |
-
# "model":model_llm
|
130 |
# }).json()
|
131 |
|
132 |
# reply = response["choices"][0]["message"]["content"]
|
133 |
# messages.append({"role": "assistant", "content": reply})
|
134 |
|
135 |
-
# output.append({"Mode":"Chat","content": reply})
|
136 |
|
137 |
# return output
|
138 |
|
139 |
# else:
|
140 |
# return "Unauthorized"
|
141 |
-
|
142 |
# user_inputs = [
|
143 |
# gr.Textbox(label="User Input", type="text"),
|
144 |
# gr.Image(),
|
@@ -169,6 +165,7 @@ content = os.environ.get("content")
|
|
169 |
state = os.environ.get("state")
|
170 |
system = os.environ.get("system")
|
171 |
auth = os.environ.get("auth")
|
|
|
172 |
data = None
|
173 |
model = None
|
174 |
image = None
|
@@ -187,11 +184,19 @@ messages = [
|
|
187 |
{"role": "system", "content": system}
|
188 |
]
|
189 |
|
190 |
-
def classify(UserInput, Image, Textbox2, Textbox3):
|
191 |
if Textbox3 == code:
|
192 |
print("Image: ", Image)
|
193 |
if Image is not None:
|
194 |
output = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
image_data = np.array(Image)
|
196 |
image_data = cv.resize(image_data, (224, 224))
|
197 |
image_array = np.asarray(image_data)
|
@@ -293,8 +298,9 @@ def classify(UserInput, Image, Textbox2, Textbox3):
|
|
293 |
return "Unauthorized"
|
294 |
|
295 |
user_inputs = [
|
|
|
296 |
gr.Textbox(label="User Input", type="text"),
|
297 |
-
gr.Image
|
298 |
gr.Textbox(label="Textbox2", type="text"),
|
299 |
gr.Textbox(label="Textbox3", type="password")
|
300 |
]
|
|
|
26 |
# with open("labels.txt", "r") as file:
|
27 |
# labels = file.read().splitlines()
|
28 |
|
29 |
+
# messages = [
|
30 |
+
# {"role": "system", "content": system}
|
31 |
+
# ]
|
32 |
+
|
33 |
+
# def classify(UserInput, Image, Textbox2, Textbox3):
|
34 |
# if Textbox3 == code:
|
35 |
+
# print("Image: ", Image)
|
36 |
# if Image is not None:
|
37 |
# output = []
|
38 |
# image_data = np.array(Image)
|
|
|
55 |
# Textbox2 = Textbox2.split(",")
|
56 |
# Textbox2_edited = [x.strip() for x in Textbox2]
|
57 |
# Textbox2_edited = list(Textbox2_edited)
|
58 |
+
# Textbox2_edited.append(UserInput)
|
59 |
+
# messages.append({"role": "user", "content": UserInput})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# for i, label in enumerate(labels):
|
62 |
# prediction_value = float(prediction[0][i])
|
|
|
69 |
|
70 |
# if max_label_index is not None:
|
71 |
# max_label = labels[max_label_index].split(' ', 1)[1]
|
72 |
+
# max_rounded_prediction = round(max_prediction_value, 2)
|
73 |
+
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
# time.sleep(1)
|
76 |
+
# if max_rounded_prediction > 0.5:
|
77 |
+
# print("\nWays to dispose of this waste: " + max_label)
|
78 |
+
# messages.append({"role": "user", "content": content + " " + max_label})
|
79 |
|
80 |
+
# headers = {
|
81 |
+
# "Content-Type": "application/json",
|
82 |
+
# "Authorization": f"Bearer {auth}"
|
83 |
+
# }
|
84 |
+
|
85 |
+
# response = requests.post(host, headers=headers, json={
|
86 |
+
# "messages": messages,
|
87 |
+
# "model": model_llm
|
88 |
+
# }).json()
|
89 |
+
|
90 |
+
# reply = response["choices"][0]["message"]["content"]
|
91 |
+
# messages.append({"role": "assistant", "content": reply})
|
92 |
+
|
93 |
+
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
94 |
+
# elif max_rounded_prediction < 0.5:
|
95 |
+
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
|
96 |
|
97 |
# return output
|
98 |
|
|
|
103 |
# Textbox2 = Textbox2.split(",")
|
104 |
# Textbox2_edited = [x.strip() for x in Textbox2]
|
105 |
# Textbox2_edited = list(Textbox2_edited)
|
106 |
+
# Textbox2_edited.append(UserInput)
|
107 |
+
|
|
|
|
|
|
|
|
|
108 |
# for i in Textbox2_edited:
|
109 |
# messages.append(
|
110 |
# {"role": "user", "content": i}
|
111 |
+
# )
|
112 |
+
|
113 |
# print("messages after appending:", messages)
|
114 |
|
115 |
# time.sleep(1)
|
116 |
+
# messages.append({"role": "user", "content": UserInput})
|
117 |
|
118 |
# headers = {
|
119 |
# "Content-Type": "application/json",
|
|
|
121 |
# }
|
122 |
|
123 |
# response = requests.post(host, headers=headers, json={
|
124 |
+
# "messages": messages,
|
125 |
+
# "model": model_llm
|
126 |
# }).json()
|
127 |
|
128 |
# reply = response["choices"][0]["message"]["content"]
|
129 |
# messages.append({"role": "assistant", "content": reply})
|
130 |
|
131 |
+
# output.append({"Mode": "Chat", "content": reply})
|
132 |
|
133 |
# return output
|
134 |
|
135 |
# else:
|
136 |
# return "Unauthorized"
|
137 |
+
|
138 |
# user_inputs = [
|
139 |
# gr.Textbox(label="User Input", type="text"),
|
140 |
# gr.Image(),
|
|
|
165 |
state = os.environ.get("state")
|
166 |
system = os.environ.get("system")
|
167 |
auth = os.environ.get("auth")
|
168 |
+
auth2 = os.environ.get("auth2")
|
169 |
data = None
|
170 |
model = None
|
171 |
image = None
|
|
|
184 |
{"role": "system", "content": system}
|
185 |
]
|
186 |
|
187 |
+
def classify(platform,UserInput, Image, Textbox2, Textbox3):
|
188 |
if Textbox3 == code:
|
189 |
print("Image: ", Image)
|
190 |
if Image is not None:
|
191 |
output = []
|
192 |
+
headers = {
|
193 |
+
"Authorization": f"Bearer {auth2}"
|
194 |
+
}
|
195 |
+
if platform == "wh":
|
196 |
+
get_image = requests.get(image, headers=headers)
|
197 |
+
print(get_image.content)
|
198 |
+
elif platform == "web":
|
199 |
+
print("WEB")
|
200 |
image_data = np.array(Image)
|
201 |
image_data = cv.resize(image_data, (224, 224))
|
202 |
image_array = np.asarray(image_data)
|
|
|
298 |
return "Unauthorized"
|
299 |
|
300 |
user_inputs = [
|
301 |
+
gr.Textbox(label="Platform", type="text"),
|
302 |
gr.Textbox(label="User Input", type="text"),
|
303 |
+
gr.Textbox(label="Image", type="text"),
|
304 |
gr.Textbox(label="Textbox2", type="text"),
|
305 |
gr.Textbox(label="Textbox3", type="password")
|
306 |
]
|