Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -314,6 +314,177 @@
|
|
314 |
# )
|
315 |
# iface.launch()
|
316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
import gradio as gr
|
318 |
import numpy as np
|
319 |
import cv2 as cv
|
@@ -385,6 +556,10 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
385 |
print("appending")
|
386 |
messages.append({"role": "user", "content": UserInput})
|
387 |
|
|
|
|
|
|
|
|
|
388 |
for i, label in enumerate(labels):
|
389 |
prediction_value = float(prediction[0][i])
|
390 |
rounded_value = round(prediction_value, 2)
|
@@ -402,8 +577,6 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
402 |
if max_rounded_prediction > 0.5:
|
403 |
print("\nWays to dispose of this waste: " + max_label)
|
404 |
messages.append({"role": "user", "content": content + " " + max_label})
|
405 |
-
# messages.append({"role": "user", "content": max_label})
|
406 |
-
|
407 |
print("IMAGE messages after appending:", messages)
|
408 |
|
409 |
header = {
|
@@ -417,9 +590,8 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
417 |
"messages": messages,
|
418 |
"model": model_llm
|
419 |
}).json()
|
420 |
-
print("RESPONSE TRY",response)
|
421 |
reply = response["choices"][0]["message"]["content"]
|
422 |
-
# messages.append({"role": "assistant", "content": reply})
|
423 |
output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
424 |
except:
|
425 |
print("DOESN'T WORK")
|
@@ -445,6 +617,10 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
445 |
|
446 |
messages.append({"role": "user", "content": UserInput})
|
447 |
|
|
|
|
|
|
|
|
|
448 |
headers = {
|
449 |
"Content-Type": "application/json",
|
450 |
"Authorization": f"Bearer {auth}"
|
@@ -456,8 +632,6 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
456 |
}).json()
|
457 |
|
458 |
reply = response["choices"][0]["message"]["content"]
|
459 |
-
# messages.append({"role": "assistant", "content": reply})
|
460 |
-
|
461 |
output.append({"Mode": "Chat", "content": reply})
|
462 |
|
463 |
return output
|
@@ -480,6 +654,7 @@ iface = gr.Interface(
|
|
480 |
)
|
481 |
iface.launch()
|
482 |
|
|
|
483 |
# import gradio as gr
|
484 |
# import numpy as np
|
485 |
# import cv2 as cv
|
|
|
314 |
# )
|
315 |
# iface.launch()
|
316 |
|
317 |
+
|
318 |
+
############################### MOST WORKING
|
319 |
+
|
320 |
+
# import gradio as gr
|
321 |
+
# import numpy as np
|
322 |
+
# import cv2 as cv
|
323 |
+
# import requests
|
324 |
+
# import io
|
325 |
+
# from PIL import Image
|
326 |
+
# import os
|
327 |
+
# import tensorflow as tf
|
328 |
+
# import random
|
329 |
+
|
330 |
+
# host = os.environ.get("host")
|
331 |
+
# code = os.environ.get("code")
|
332 |
+
# model_llm = os.environ.get("model")
|
333 |
+
# content = os.environ.get("content")
|
334 |
+
# state = os.environ.get("state")
|
335 |
+
# system = os.environ.get("system")
|
336 |
+
# auth = os.environ.get("auth")
|
337 |
+
# auth2 = os.environ.get("auth2")
|
338 |
+
# data = None
|
339 |
+
|
340 |
+
# np.set_printoptions(suppress=True)
|
341 |
+
|
342 |
+
# model = tf.keras.models.load_model('keras_model.h5')
|
343 |
+
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
344 |
+
|
345 |
+
# with open("labels.txt", "r") as file:
|
346 |
+
# labels = file.read().splitlines()
|
347 |
+
|
348 |
+
# messages = [
|
349 |
+
# {"role": "system", "content": system}
|
350 |
+
# ]
|
351 |
+
|
352 |
+
# def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
353 |
+
# if Textbox3 == code:
|
354 |
+
# imageData = None
|
355 |
+
# if Images != "None":
|
356 |
+
# output = []
|
357 |
+
# headers = {
|
358 |
+
# "Authorization": f"Bearer {auth2}"
|
359 |
+
# }
|
360 |
+
# if platform == "wh":
|
361 |
+
# get_image = requests.get(Images, headers=headers)
|
362 |
+
# if get_image.status_code == 200:
|
363 |
+
# image_data = get_image.content
|
364 |
+
# elif platform == "web":
|
365 |
+
# print("WEB")
|
366 |
+
# else:
|
367 |
+
# pass
|
368 |
+
|
369 |
+
# image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
|
370 |
+
# image = cv.resize(image, (224, 224))
|
371 |
+
# image_array = np.asarray(image)
|
372 |
+
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
373 |
+
# data[0] = normalized_image_array
|
374 |
+
|
375 |
+
# prediction = model.predict(data)
|
376 |
+
|
377 |
+
# max_label_index = None
|
378 |
+
# max_prediction_value = -1
|
379 |
+
|
380 |
+
# print('Prediction')
|
381 |
+
|
382 |
+
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
383 |
+
# Textbox2 = Textbox2.split(",")
|
384 |
+
# Textbox2_edited = [x.strip() for x in Textbox2]
|
385 |
+
# Textbox2_edited = list(Textbox2_edited)
|
386 |
+
# Textbox2_edited.append(UserInput)
|
387 |
+
# print(UserInput)
|
388 |
+
# print("appending")
|
389 |
+
# messages.append({"role": "user", "content": UserInput})
|
390 |
+
|
391 |
+
# for i, label in enumerate(labels):
|
392 |
+
# prediction_value = float(prediction[0][i])
|
393 |
+
# rounded_value = round(prediction_value, 2)
|
394 |
+
# print(f'{label}: {rounded_value}')
|
395 |
+
|
396 |
+
# if prediction_value > max_prediction_value:
|
397 |
+
# max_label_index = i
|
398 |
+
# max_prediction_value = prediction_value
|
399 |
+
|
400 |
+
# if max_label_index is not None:
|
401 |
+
# max_label = labels[max_label_index].split(' ', 1)[1]
|
402 |
+
# max_rounded_prediction = round(max_prediction_value, 2)
|
403 |
+
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
404 |
+
|
405 |
+
# if max_rounded_prediction > 0.5:
|
406 |
+
# print("\nWays to dispose of this waste: " + max_label)
|
407 |
+
# messages.append({"role": "user", "content": content + " " + max_label})
|
408 |
+
# # messages.append({"role": "user", "content": max_label})
|
409 |
+
|
410 |
+
# print("IMAGE messages after appending:", messages)
|
411 |
+
|
412 |
+
# header = {
|
413 |
+
# "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
|
414 |
+
# "Content-Type": "application/json",
|
415 |
+
# "Authorization": f"Bearer {auth}"
|
416 |
+
# }
|
417 |
+
|
418 |
+
# try:
|
419 |
+
# response = requests.post(host, headers=header, json={
|
420 |
+
# "messages": messages,
|
421 |
+
# "model": model_llm
|
422 |
+
# }).json()
|
423 |
+
# print("RESPONSE TRY",response)
|
424 |
+
# reply = response["choices"][0]["message"]["content"]
|
425 |
+
# # messages.append({"role": "assistant", "content": reply})
|
426 |
+
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
427 |
+
# except:
|
428 |
+
# print("DOESN'T WORK")
|
429 |
+
|
430 |
+
# elif max_rounded_prediction < 0.5:
|
431 |
+
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
|
432 |
+
|
433 |
+
# return output
|
434 |
+
|
435 |
+
# elif Images == "None":
|
436 |
+
# output = []
|
437 |
+
|
438 |
+
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
439 |
+
# Textbox2 = Textbox2.split(",")
|
440 |
+
# Textbox2_edited = [x.strip() for x in Textbox2]
|
441 |
+
# Textbox2_edited = list(Textbox2_edited)
|
442 |
+
# Textbox2_edited.append(UserInput)
|
443 |
+
|
444 |
+
# for i in Textbox2_edited:
|
445 |
+
# messages.append({"role": "user", "content": i})
|
446 |
+
|
447 |
+
# print("messages after appending:", messages)
|
448 |
+
|
449 |
+
# messages.append({"role": "user", "content": UserInput})
|
450 |
+
|
451 |
+
# headers = {
|
452 |
+
# "Content-Type": "application/json",
|
453 |
+
# "Authorization": f"Bearer {auth}"
|
454 |
+
# }
|
455 |
+
|
456 |
+
# response = requests.post(host, headers=headers, json={
|
457 |
+
# "messages": messages,
|
458 |
+
# "model": model_llm
|
459 |
+
# }).json()
|
460 |
+
|
461 |
+
# reply = response["choices"][0]["message"]["content"]
|
462 |
+
# # messages.append({"role": "assistant", "content": reply})
|
463 |
+
|
464 |
+
# output.append({"Mode": "Chat", "content": reply})
|
465 |
+
|
466 |
+
# return output
|
467 |
+
# else:
|
468 |
+
# return "Unauthorized"
|
469 |
+
|
470 |
+
# user_inputs = [
|
471 |
+
# gr.Textbox(label="Platform", type="text"),
|
472 |
+
# gr.Textbox(label="User Input", type="text"),
|
473 |
+
# gr.Textbox(label="Image", type="text"),
|
474 |
+
# gr.Textbox(label="Textbox2", type="text"),
|
475 |
+
# gr.Textbox(label="Textbox3", type="password")
|
476 |
+
# ]
|
477 |
+
|
478 |
+
# iface = gr.Interface(
|
479 |
+
# fn=classify,
|
480 |
+
# inputs=user_inputs,
|
481 |
+
# outputs=gr.outputs.JSON(),
|
482 |
+
# title="Classifier",
|
483 |
+
# )
|
484 |
+
# iface.launch()
|
485 |
+
|
486 |
+
############## TEST
|
487 |
+
|
488 |
import gradio as gr
|
489 |
import numpy as np
|
490 |
import cv2 as cv
|
|
|
556 |
print("appending")
|
557 |
messages.append({"role": "user", "content": UserInput})
|
558 |
|
559 |
+
# Pop earlier messages if there are more than 10
|
560 |
+
while len(messages) > 10:
|
561 |
+
messages.pop(0)
|
562 |
+
|
563 |
for i, label in enumerate(labels):
|
564 |
prediction_value = float(prediction[0][i])
|
565 |
rounded_value = round(prediction_value, 2)
|
|
|
577 |
if max_rounded_prediction > 0.5:
|
578 |
print("\nWays to dispose of this waste: " + max_label)
|
579 |
messages.append({"role": "user", "content": content + " " + max_label})
|
|
|
|
|
580 |
print("IMAGE messages after appending:", messages)
|
581 |
|
582 |
header = {
|
|
|
590 |
"messages": messages,
|
591 |
"model": model_llm
|
592 |
}).json()
|
593 |
+
print("RESPONSE TRY", response)
|
594 |
reply = response["choices"][0]["message"]["content"]
|
|
|
595 |
output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
596 |
except:
|
597 |
print("DOESN'T WORK")
|
|
|
617 |
|
618 |
messages.append({"role": "user", "content": UserInput})
|
619 |
|
620 |
+
# Pop earlier messages if there are more than 10
|
621 |
+
while len(messages) > 10:
|
622 |
+
messages.pop(0)
|
623 |
+
|
624 |
headers = {
|
625 |
"Content-Type": "application/json",
|
626 |
"Authorization": f"Bearer {auth}"
|
|
|
632 |
}).json()
|
633 |
|
634 |
reply = response["choices"][0]["message"]["content"]
|
|
|
|
|
635 |
output.append({"Mode": "Chat", "content": reply})
|
636 |
|
637 |
return output
|
|
|
654 |
)
|
655 |
iface.launch()
|
656 |
|
657 |
+
|
658 |
# import gradio as gr
|
659 |
# import numpy as np
|
660 |
# import cv2 as cv
|