Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
import tensorflow
|
3 |
import numpy as np
|
4 |
import cv2 as cv
|
5 |
import requests
|
6 |
import time
|
7 |
-
import os
|
8 |
|
9 |
-
host = os.environ.get("host")
|
10 |
-
code = os.environ.get("code")
|
11 |
-
model = os.environ.get("model")
|
12 |
data = None
|
13 |
model = None
|
14 |
image = None
|
@@ -18,7 +13,6 @@ labels = None
|
|
18 |
print('START')
|
19 |
np.set_printoptions(suppress=True)
|
20 |
|
21 |
-
model = tensorflow.keras.models.load_model('keras_model.h5')
|
22 |
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
23 |
|
24 |
with open("labels.txt", "r") as file:
|
@@ -29,8 +23,13 @@ def classify(image_path):
|
|
29 |
image_data = np.array(image_path)
|
30 |
image_data = cv.resize(image_data, (224, 224))
|
31 |
image_array = np.asarray(image_data)
|
32 |
-
normalized_image_array = (image_array.astype(np
|
33 |
data[0] = normalized_image_array
|
|
|
|
|
|
|
|
|
|
|
34 |
prediction = model.predict(data)
|
35 |
|
36 |
max_label_index = None
|
@@ -52,15 +51,14 @@ def classify(image_path):
|
|
52 |
print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
|
53 |
|
54 |
time.sleep(1)
|
55 |
-
print("\nWays to dispose this waste: " + max_label)
|
56 |
payload = [
|
57 |
{"role": "system", "content": "You are a helpful assistant."},
|
58 |
-
{"role": "user", "content": "Give me the steps to dispose this waste in
|
59 |
]
|
60 |
|
61 |
response = requests.post(host, json={
|
62 |
"messages": payload,
|
63 |
-
"model": model,
|
64 |
"temperature": 0.5,
|
65 |
"presence_penalty": 0,
|
66 |
"frequency_penalty": 0,
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
import cv2 as cv
|
4 |
import requests
|
5 |
import time
|
|
|
6 |
|
|
|
|
|
|
|
7 |
data = None
|
8 |
model = None
|
9 |
image = None
|
|
|
13 |
print('START')
|
14 |
np.set_printoptions(suppress=True)
|
15 |
|
|
|
16 |
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
17 |
|
18 |
with open("labels.txt", "r") as file:
|
|
|
23 |
image_data = np.array(image_path)
|
24 |
image_data = cv.resize(image_data, (224, 224))
|
25 |
image_array = np.asarray(image_data)
|
26 |
+
normalized_image_array = (image_array.astype(np float32) / 127.0) - 1
|
27 |
data[0] = normalized_image_array
|
28 |
+
|
29 |
+
# Load the model within the classify function
|
30 |
+
import tensorflow as tf
|
31 |
+
model = tf.keras.models.load_model('keras_model.h5')
|
32 |
+
|
33 |
prediction = model.predict(data)
|
34 |
|
35 |
max_label_index = None
|
|
|
51 |
print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
|
52 |
|
53 |
time.sleep(1)
|
54 |
+
print("\nWays to dispose of this waste: " + max_label)
|
55 |
payload = [
|
56 |
{"role": "system", "content": "You are a helpful assistant."},
|
57 |
+
{"role": "user", "content": "Give me the steps to dispose of this waste in bullet points (5 max): " + "Plastic"}
|
58 |
]
|
59 |
|
60 |
response = requests.post(host, json={
|
61 |
"messages": payload,
|
|
|
62 |
"temperature": 0.5,
|
63 |
"presence_penalty": 0,
|
64 |
"frequency_penalty": 0,
|