tommy24 commited on
Commit
844b9fb
·
1 Parent(s): 8cfd2ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -350,7 +350,7 @@ messages = [
350
  def classify(platform, UserInput, Images, Textbox2, Textbox3):
351
  if Textbox3 == code:
352
  imageData = None
353
- if Image is not None:
354
  output = []
355
  headers = {
356
  "Authorization": f"Bearer {auth2}"
@@ -358,14 +358,11 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
358
  if platform == "wh":
359
  get_image = requests.get(Images, headers=headers)
360
  if get_image.status_code == 200:
361
- # print(get_image.content)
362
  random_id = random.randint(1000, 9999)
363
-
364
  file_extension = ".png"
365
  filename = f"image_{random_id}{file_extension}"
366
  with open(filename, "wb") as file:
367
  file.write(get_image.content)
368
-
369
  print(f"Saved image as: {filename}")
370
 
371
  full_path = os.path.join(os.getcwd(), filename)
@@ -376,8 +373,11 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
376
  else:
377
  pass
378
 
 
 
 
379
  image_data = cv.resize(imageData, (224, 224))
380
- normalized_image_array = (image_data.astype(np.float32) / 127.0) - 1
381
  data[0] = normalized_image_array
382
 
383
  prediction = model.predict(data)
 
350
  def classify(platform, UserInput, Images, Textbox2, Textbox3):
351
  if Textbox3 == code:
352
  imageData = None
353
+ if Images is not None:
354
  output = []
355
  headers = {
356
  "Authorization": f"Bearer {auth2}"
 
358
  if platform == "wh":
359
  get_image = requests.get(Images, headers=headers)
360
  if get_image.status_code == 200:
 
361
  random_id = random.randint(1000, 9999)
 
362
  file_extension = ".png"
363
  filename = f"image_{random_id}{file_extension}"
364
  with open(filename, "wb") as file:
365
  file.write(get_image.content)
 
366
  print(f"Saved image as: {filename}")
367
 
368
  full_path = os.path.join(os.getcwd(), filename)
 
373
  else:
374
  pass
375
 
376
+ image = cv.imread(full_path)
377
+ image = cv.resize(image, (224, 224))
378
+ image_array = np.asarray(image)
379
  image_data = cv.resize(imageData, (224, 224))
380
+ normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
381
  data[0] = normalized_image_array
382
 
383
  prediction = model.predict(data)