Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -315,181 +315,15 @@
|
|
315 |
# iface.launch()
|
316 |
|
317 |
|
318 |
-
# import gradio as gr
|
319 |
-
# import numpy as np
|
320 |
-
# import cv2 as cv
|
321 |
-
# import requests
|
322 |
-
# import io
|
323 |
-
# from PIL import Image
|
324 |
-
# import os
|
325 |
-
# import tensorflow as tf
|
326 |
-
# import random
|
327 |
-
|
328 |
-
# host = os.environ.get("host")
|
329 |
-
# code = os.environ.get("code")
|
330 |
-
# model_llm = os.environ.get("model")
|
331 |
-
# content = os.environ.get("content")
|
332 |
-
# state = os.environ.get("state")
|
333 |
-
# system = os.environ.get("system")
|
334 |
-
# auth = os.environ.get("auth")
|
335 |
-
# auth2 = os.environ.get("auth2")
|
336 |
-
# data = None
|
337 |
-
|
338 |
-
# np.set_printoptions(suppress=True)
|
339 |
-
|
340 |
-
# # Load the model outside of the function
|
341 |
-
# model = tf.keras.models.load_model('keras_model.h5')
|
342 |
-
|
343 |
-
# # Load labels from a file
|
344 |
-
# with open("labels.txt", "r") as file:
|
345 |
-
# labels = file.read().splitlines()
|
346 |
-
|
347 |
-
# messages = [
|
348 |
-
# {"role": "system", "content": system}
|
349 |
-
# ]
|
350 |
-
|
351 |
-
# def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
352 |
-
# if Textbox3 == code:
|
353 |
-
# imageData = None
|
354 |
-
# if Images is not None:
|
355 |
-
# output = []
|
356 |
-
# headers = {
|
357 |
-
# "Authorization": f"Bearer {auth2}"
|
358 |
-
# }
|
359 |
-
# if platform == "wh":
|
360 |
-
# get_image = requests.get(Images, headers=headers)
|
361 |
-
# if get_image.status_code == 200:
|
362 |
-
# random_id = random.randint(1000, 9999)
|
363 |
-
# file_extension = ".png"
|
364 |
-
# filename = f"image_{random_id}{file_extension}"
|
365 |
-
# with open(filename, "wb") as file:
|
366 |
-
# file.write(get_image.content)
|
367 |
-
# print(f"Saved image as: {filename}")
|
368 |
-
|
369 |
-
# full_path = os.path.join(os.getcwd(), filename)
|
370 |
-
# print(f"Saved image as: {full_path}")
|
371 |
-
# elif platform == "web":
|
372 |
-
# print("WEB")
|
373 |
-
# # Handle web case if needed
|
374 |
-
# else:
|
375 |
-
# pass
|
376 |
-
|
377 |
-
# image = cv.imread(full_path)
|
378 |
-
# image = cv.resize(image, (224, 224))
|
379 |
-
# image_array = np.asarray(image)
|
380 |
-
# image_data = cv.resize(imageData, (224, 224))
|
381 |
-
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
382 |
-
# data[0] = normalized_image_array
|
383 |
-
|
384 |
-
# prediction = model.predict(data)
|
385 |
-
|
386 |
-
# max_label_index = None
|
387 |
-
# max_prediction_value = -1
|
388 |
-
|
389 |
-
# print('Prediction')
|
390 |
-
|
391 |
-
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
392 |
-
# Textbox2 = Textbox2.split(",")
|
393 |
-
# Textbox2_edited = [x.strip() for x in Textbox2]
|
394 |
-
# Textbox2_edited = list(Textbox2_edited)
|
395 |
-
# Textbox2_edited.append(UserInput)
|
396 |
-
# messages.append({"role": "user", "content": UserInput})
|
397 |
-
|
398 |
-
# for i, label in enumerate(labels):
|
399 |
-
# prediction_value = float(prediction[0][i])
|
400 |
-
# rounded_value = round(prediction_value, 2)
|
401 |
-
# print(f'{label}: {rounded_value}')
|
402 |
-
|
403 |
-
# if prediction_value > max_prediction_value:
|
404 |
-
# max_label_index = i
|
405 |
-
# max_prediction_value = prediction_value
|
406 |
-
|
407 |
-
# if max_label_index is not None:
|
408 |
-
# max_label = labels[max_label_index].split(' ', 1)[1]
|
409 |
-
# max_rounded_prediction = round(max_prediction_value, 2)
|
410 |
-
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
411 |
-
|
412 |
-
# if max_rounded_prediction > 0.5:
|
413 |
-
# print("\nWays to dispose of this waste: " + max_label)
|
414 |
-
# messages.append({"role": "user", "content": content + " " + max_label})
|
415 |
-
|
416 |
-
# headers = {
|
417 |
-
# "Content-Type": "application/json",
|
418 |
-
# "Authorization": f"Bearer {auth}"
|
419 |
-
# }
|
420 |
-
|
421 |
-
# response = requests.post(host, headers=headers, json={
|
422 |
-
# "messages": messages,
|
423 |
-
# "model": model_llm
|
424 |
-
# }).json()
|
425 |
-
|
426 |
-
# reply = response["choices"][0]["message"]["content"]
|
427 |
-
# messages.append({"role": "assistant", "content": reply})
|
428 |
-
|
429 |
-
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
430 |
-
# elif max_rounded_prediction < 0.5:
|
431 |
-
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
|
432 |
-
|
433 |
-
# return output
|
434 |
-
|
435 |
-
# else:
|
436 |
-
# output = []
|
437 |
-
|
438 |
-
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
439 |
-
# Textbox2 = Textbox2.split(",")
|
440 |
-
# Textbox2_edited = [x.strip() for x in Textbox2]
|
441 |
-
# Textbox2_edited = list(Textbox2_edited)
|
442 |
-
# Textbox2_edited.append(UserInput)
|
443 |
-
|
444 |
-
# for i in Textbox2_edited:
|
445 |
-
# messages.append({"role": "user", "content": i})
|
446 |
-
|
447 |
-
# print("messages after appending:", messages)
|
448 |
-
|
449 |
-
# messages.append({"role": "user", "content": UserInput})
|
450 |
-
|
451 |
-
# headers = {
|
452 |
-
# "Content-Type": "application/json",
|
453 |
-
# "Authorization": f"Bearer {auth}"
|
454 |
-
# }
|
455 |
-
|
456 |
-
# response = requests.post(host, headers=headers, json={
|
457 |
-
# "messages": messages,
|
458 |
-
# "model": model_llm
|
459 |
-
# }).json()
|
460 |
-
|
461 |
-
# reply = response["choices"][0]["message"]["content"]
|
462 |
-
# messages.append({"role": "assistant", "content": reply})
|
463 |
-
|
464 |
-
# output.append({"Mode": "Chat", "content": reply})
|
465 |
-
|
466 |
-
# return output
|
467 |
-
# else:
|
468 |
-
# return "Unauthorized"
|
469 |
-
|
470 |
-
# user_inputs = [
|
471 |
-
# gr.Textbox(label="Platform", type="text"),
|
472 |
-
# gr.Textbox(label="User Input", type="text"),
|
473 |
-
# gr.Textbox(label="Image", type="text"),
|
474 |
-
# gr.Textbox(label="Textbox2", type="text"),
|
475 |
-
# gr.Textbox(label="Textbox3", type="password")
|
476 |
-
# ]
|
477 |
-
|
478 |
-
# iface = gr.Interface(
|
479 |
-
# fn=classify,
|
480 |
-
# inputs=user_inputs,
|
481 |
-
# outputs=gr.outputs.JSON(),
|
482 |
-
# title="Classifier",
|
483 |
-
# )
|
484 |
-
# iface.launch()
|
485 |
import gradio as gr
|
486 |
import numpy as np
|
487 |
import cv2 as cv
|
488 |
import requests
|
489 |
-
import
|
|
|
490 |
import os
|
491 |
import tensorflow as tf
|
492 |
-
import
|
493 |
|
494 |
host = os.environ.get("host")
|
495 |
code = os.environ.get("code")
|
@@ -510,12 +344,13 @@ model = tf.keras.models.load_model('keras_model.h5')
|
|
510 |
with open("labels.txt", "r") as file:
|
511 |
labels = file.read().splitlines()
|
512 |
|
513 |
-
messages = [
|
|
|
|
|
514 |
|
515 |
def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
516 |
if Textbox3 == code:
|
517 |
imageData = None
|
518 |
-
image_data_url = None # Initialize image_data_url
|
519 |
if Images is not None:
|
520 |
output = []
|
521 |
headers = {
|
@@ -524,80 +359,76 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
524 |
if platform == "wh":
|
525 |
get_image = requests.get(Images, headers=headers)
|
526 |
if get_image.status_code == 200:
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
elif platform == "web":
|
534 |
print("WEB")
|
535 |
# Handle web case if needed
|
536 |
else:
|
537 |
pass
|
538 |
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
image = cv.resize(image, (224, 224))
|
546 |
-
image_array = np.asarray(image)
|
547 |
-
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
548 |
-
data[0] = normalized_image_array
|
549 |
|
550 |
-
|
551 |
|
552 |
-
|
553 |
-
|
554 |
|
555 |
-
|
556 |
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
|
592 |
-
|
593 |
-
|
594 |
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
|
599 |
-
output.append({"Mode": "Image", "type": "Data URL", "data_url": image_data_url})
|
600 |
return output
|
|
|
601 |
else:
|
602 |
output = []
|
603 |
|
@@ -636,7 +467,7 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
636 |
user_inputs = [
|
637 |
gr.Textbox(label="Platform", type="text"),
|
638 |
gr.Textbox(label="User Input", type="text"),
|
639 |
-
gr.Textbox(label="
|
640 |
gr.Textbox(label="Textbox2", type="text"),
|
641 |
gr.Textbox(label="Textbox3", type="password")
|
642 |
]
|
@@ -648,3 +479,170 @@ iface = gr.Interface(
|
|
648 |
title="Classifier",
|
649 |
)
|
650 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
# iface.launch()
|
316 |
|
317 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
import gradio as gr
|
319 |
import numpy as np
|
320 |
import cv2 as cv
|
321 |
import requests
|
322 |
+
import io
|
323 |
+
from PIL import Image
|
324 |
import os
|
325 |
import tensorflow as tf
|
326 |
+
import random
|
327 |
|
328 |
host = os.environ.get("host")
|
329 |
code = os.environ.get("code")
|
|
|
344 |
with open("labels.txt", "r") as file:
|
345 |
labels = file.read().splitlines()
|
346 |
|
347 |
+
messages = [
|
348 |
+
{"role": "system", "content": system}
|
349 |
+
]
|
350 |
|
351 |
def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
352 |
if Textbox3 == code:
|
353 |
imageData = None
|
|
|
354 |
if Images is not None:
|
355 |
output = []
|
356 |
headers = {
|
|
|
359 |
if platform == "wh":
|
360 |
get_image = requests.get(Images, headers=headers)
|
361 |
if get_image.status_code == 200:
|
362 |
+
random_id = random.randint(1000, 9999)
|
363 |
+
file_extension = ".png"
|
364 |
+
filename = f"image_{random_id}{file_extension}"
|
365 |
+
with open(filename, "wb") as file:
|
366 |
+
file.write(get_image.content)
|
367 |
+
print(f"Saved image as: {filename}")
|
368 |
elif platform == "web":
|
369 |
print("WEB")
|
370 |
# Handle web case if needed
|
371 |
else:
|
372 |
pass
|
373 |
|
374 |
+
image = cv.imread("https://tommy24-classifier.hf.space/file=/tmp/",filename)
|
375 |
+
image = cv.resize(image, (224, 224))
|
376 |
+
image_array = np.asarray(image)
|
377 |
+
image_data = cv.resize(imageData, (224, 224))
|
378 |
+
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
379 |
+
data[0] = normalized_image_array
|
|
|
|
|
|
|
|
|
380 |
|
381 |
+
prediction = model.predict(data)
|
382 |
|
383 |
+
max_label_index = None
|
384 |
+
max_prediction_value = -1
|
385 |
|
386 |
+
print('Prediction')
|
387 |
|
388 |
+
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
389 |
+
Textbox2 = Textbox2.split(",")
|
390 |
+
Textbox2_edited = [x.strip() for x in Textbox2]
|
391 |
+
Textbox2_edited = list(Textbox2_edited)
|
392 |
+
Textbox2_edited.append(UserInput)
|
393 |
+
messages.append({"role": "user", "content": UserInput})
|
394 |
|
395 |
+
for i, label in enumerate(labels):
|
396 |
+
prediction_value = float(prediction[0][i])
|
397 |
+
rounded_value = round(prediction_value, 2)
|
398 |
+
print(f'{label}: {rounded_value}')
|
399 |
|
400 |
+
if prediction_value > max_prediction_value:
|
401 |
+
max_label_index = i
|
402 |
+
max_prediction_value = prediction_value
|
403 |
|
404 |
+
if max_label_index is not None:
|
405 |
+
max_label = labels[max_label_index].split(' ', 1)[1]
|
406 |
+
max_rounded_prediction = round(max_prediction_value, 2)
|
407 |
+
print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
408 |
|
409 |
+
if max_rounded_prediction > 0.5:
|
410 |
+
print("\nWays to dispose of this waste: " + max_label)
|
411 |
+
messages.append({"role": "user", "content": content + " " + max_label})
|
412 |
|
413 |
+
headers = {
|
414 |
+
"Content-Type": "application/json",
|
415 |
+
"Authorization": f"Bearer {auth}"
|
416 |
+
}
|
417 |
|
418 |
+
response = requests.post(host, headers=headers, json={
|
419 |
+
"messages": messages,
|
420 |
+
"model": model_llm
|
421 |
+
}).json()
|
422 |
|
423 |
+
reply = response["choices"][0]["message"]["content"]
|
424 |
+
messages.append({"role": "assistant", "content": reply})
|
425 |
|
426 |
+
output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
427 |
+
elif max_rounded_prediction < 0.5:
|
428 |
+
output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
|
429 |
|
|
|
430 |
return output
|
431 |
+
|
432 |
else:
|
433 |
output = []
|
434 |
|
|
|
467 |
user_inputs = [
|
468 |
gr.Textbox(label="Platform", type="text"),
|
469 |
gr.Textbox(label="User Input", type="text"),
|
470 |
+
gr.Textbox(label="Image", type="text"),
|
471 |
gr.Textbox(label="Textbox2", type="text"),
|
472 |
gr.Textbox(label="Textbox3", type="password")
|
473 |
]
|
|
|
479 |
title="Classifier",
|
480 |
)
|
481 |
iface.launch()
|
482 |
+
|
483 |
+
# import gradio as gr
|
484 |
+
# import numpy as np
|
485 |
+
# import cv2 as cv
|
486 |
+
# import requests
|
487 |
+
# import random
|
488 |
+
# import os
|
489 |
+
# import tensorflow as tf
|
490 |
+
# import base64
|
491 |
+
|
492 |
+
# host = os.environ.get("host")
|
493 |
+
# code = os.environ.get("code")
|
494 |
+
# model_llm = os.environ.get("model")
|
495 |
+
# content = os.environ.get("content")
|
496 |
+
# state = os.environ.get("state")
|
497 |
+
# system = os.environ.get("system")
|
498 |
+
# auth = os.environ.get("auth")
|
499 |
+
# auth2 = os.environ.get("auth2")
|
500 |
+
# data = None
|
501 |
+
|
502 |
+
# np.set_printoptions(suppress=True)
|
503 |
+
|
504 |
+
# # Load the model outside of the function
|
505 |
+
# model = tf.keras.models.load_model('keras_model.h5')
|
506 |
+
|
507 |
+
# # Load labels from a file
|
508 |
+
# with open("labels.txt", "r") as file:
|
509 |
+
# labels = file.read().splitlines()
|
510 |
+
|
511 |
+
# messages = [{"role": "system", "content": system}]
|
512 |
+
|
513 |
+
# def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
514 |
+
# if Textbox3 == code:
|
515 |
+
# imageData = None
|
516 |
+
# image_data_url = None # Initialize image_data_url
|
517 |
+
# if Images is not None:
|
518 |
+
# output = []
|
519 |
+
# headers = {
|
520 |
+
# "Authorization": f"Bearer {auth2}"
|
521 |
+
# }
|
522 |
+
# if platform == "wh":
|
523 |
+
# get_image = requests.get(Images, headers=headers)
|
524 |
+
# if get_image.status_code == 200:
|
525 |
+
# # Convert the image data to base64
|
526 |
+
# image_base64 = base64.b64encode(get_image.content).decode("utf-8")
|
527 |
+
|
528 |
+
# # Create a data URL
|
529 |
+
# image_data_url = f"data:image/png;base64,{image_base64}"
|
530 |
+
|
531 |
+
# elif platform == "web":
|
532 |
+
# print("WEB")
|
533 |
+
# # Handle web case if needed
|
534 |
+
# else:
|
535 |
+
# pass
|
536 |
+
|
537 |
+
# if image_data_url is not None:
|
538 |
+
# # Load the image from image_data_url
|
539 |
+
# image_data = base64.b64decode(image_base64)
|
540 |
+
# nparr = np.frombuffer(image_data, np.uint8)
|
541 |
+
# image = cv.imdecode(nparr, cv.IMREAD_COLOR)
|
542 |
+
|
543 |
+
# image = cv.resize(image, (224, 224))
|
544 |
+
# image_array = np.asarray(image)
|
545 |
+
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
546 |
+
# data[0] = normalized_image_array
|
547 |
+
|
548 |
+
# prediction = model.predict(data)
|
549 |
+
|
550 |
+
# max_label_index = None
|
551 |
+
# max_prediction_value = -1
|
552 |
+
|
553 |
+
# print('Prediction')
|
554 |
+
|
555 |
+
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
556 |
+
# Textbox2 = Textbox2.split(",")
|
557 |
+
# Textbox2_edited = [x.strip() for x in Textbox2]
|
558 |
+
# Textbox2_edited = list(Textbox2_edited)
|
559 |
+
# Textbox2_edited.append(UserInput)
|
560 |
+
# messages.append({"role": "user", "content": UserInput})
|
561 |
+
|
562 |
+
# for i, label in enumerate(labels):
|
563 |
+
# prediction_value = float(prediction[0][i])
|
564 |
+
# rounded_value = round(prediction_value, 2)
|
565 |
+
# print(f'{label}: {rounded_value}')
|
566 |
+
|
567 |
+
# if prediction_value > max_prediction_value:
|
568 |
+
# max_label_index = i
|
569 |
+
# max_prediction_value = prediction_value
|
570 |
+
|
571 |
+
# if max_label_index is not None:
|
572 |
+
# max_label = labels[max_label_index].split(' ', 1)[1]
|
573 |
+
# max_rounded_prediction = round(max_prediction_value, 2)
|
574 |
+
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
575 |
+
|
576 |
+
# if max_rounded_prediction > 0.5:
|
577 |
+
# print("\nWays to dispose of this waste: " + max_label)
|
578 |
+
# messages.append({"role": "user", "content": content + " " + max_label})
|
579 |
+
|
580 |
+
# headers = {
|
581 |
+
# "Content-Type": "application/json",
|
582 |
+
# "Authorization": f"Bearer {auth}"
|
583 |
+
# }
|
584 |
+
|
585 |
+
# response = requests.post(host, headers=headers, json={
|
586 |
+
# "messages": messages,
|
587 |
+
# "model": model_llm
|
588 |
+
# }).json()
|
589 |
+
|
590 |
+
# reply = response["choices"][0]["message"]["content"]
|
591 |
+
# messages.append({"role": "assistant", "content": reply})
|
592 |
+
|
593 |
+
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
594 |
+
# elif max_rounded_prediction < 0.5:
|
595 |
+
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
|
596 |
+
|
597 |
+
# output.append({"Mode": "Image", "type": "Data URL", "data_url": image_data_url})
|
598 |
+
# return output
|
599 |
+
# else:
|
600 |
+
# output = []
|
601 |
+
|
602 |
+
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
603 |
+
# Textbox2 = Textbox2.split(",")
|
604 |
+
# Textbox2_edited = [x.strip() for x in Textbox2]
|
605 |
+
# Textbox2_edited = list(Textbox2_edited)
|
606 |
+
# Textbox2_edited.append(UserInput)
|
607 |
+
|
608 |
+
# for i in Textbox2_edited:
|
609 |
+
# messages.append({"role": "user", "content": i})
|
610 |
+
|
611 |
+
# print("messages after appending:", messages)
|
612 |
+
|
613 |
+
# messages.append({"role": "user", "content": UserInput})
|
614 |
+
|
615 |
+
# headers = {
|
616 |
+
# "Content-Type": "application/json",
|
617 |
+
# "Authorization": f"Bearer {auth}"
|
618 |
+
# }
|
619 |
+
|
620 |
+
# response = requests.post(host, headers=headers, json={
|
621 |
+
# "messages": messages,
|
622 |
+
# "model": model_llm
|
623 |
+
# }).json()
|
624 |
+
|
625 |
+
# reply = response["choices"][0]["message"]["content"]
|
626 |
+
# messages.append({"role": "assistant", "content": reply})
|
627 |
+
|
628 |
+
# output.append({"Mode": "Chat", "content": reply})
|
629 |
+
|
630 |
+
# return output
|
631 |
+
# else:
|
632 |
+
# return "Unauthorized"
|
633 |
+
|
634 |
+
# user_inputs = [
|
635 |
+
# gr.Textbox(label="Platform", type="text"),
|
636 |
+
# gr.Textbox(label="User Input", type="text"),
|
637 |
+
# gr.Textbox(label="Images", type="text"),
|
638 |
+
# gr.Textbox(label="Textbox2", type="text"),
|
639 |
+
# gr.Textbox(label="Textbox3", type="password")
|
640 |
+
# ]
|
641 |
+
|
642 |
+
# iface = gr.Interface(
|
643 |
+
# fn=classify,
|
644 |
+
# inputs=user_inputs,
|
645 |
+
# outputs=gr.outputs.JSON(),
|
646 |
+
# title="Classifier",
|
647 |
+
# )
|
648 |
+
# iface.launch()
|