tommy24 commited on
Commit
95e085e
·
1 Parent(s): dde5004

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -17
app.py CHANGED
@@ -225,26 +225,30 @@ def classify(UserInput, Image, Textbox2, Textbox3):
225
 
226
  if max_label_index is not None:
227
  max_label = labels[max_label_index].split(' ', 1)[1]
228
- print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
 
229
 
230
  time.sleep(1)
231
- print("\nWays to dispose of this waste: " + max_label)
232
- messages.append({"role": "user", "content": content + " " + max_label})
233
-
234
- headers = {
235
- "Content-Type": "application/json",
236
- "Authorization": f"Bearer {auth}"
237
- }
238
 
239
- response = requests.post(host, headers=headers, json={
240
- "messages": messages,
241
- "model": model_llm
242
- }).json()
243
-
244
- reply = response["choices"][0]["message"]["content"]
245
- messages.append({"role": "assistant", "content": reply})
246
-
247
- output.append({"Mode": "Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
 
 
 
 
 
 
 
248
 
249
  return output
250
 
 
225
 
226
  if max_label_index is not None:
227
  max_label = labels[max_label_index].split(' ', 1)[1]
228
+ rounded_prediction = round(max_prediction_value, 2)
229
+ print(f'Maximum Prediction: {max_label} with a value of {rounded_prediction}')
230
 
231
  time.sleep(1)
232
+ if rounded_prediction > 0.5:
233
+ print("\nWays to dispose of this waste: " + max_label)
234
+ messages.append({"role": "user", "content": content + " " + max_label})
 
 
 
 
235
 
236
+ headers = {
237
+ "Content-Type": "application/json",
238
+ "Authorization": f"Bearer {auth}"
239
+ }
240
+
241
+ response = requests.post(host, headers=headers, json={
242
+ "messages": messages,
243
+ "model": model_llm
244
+ }).json()
245
+
246
+ reply = response["choices"][0]["message"]["content"]
247
+ messages.append({"role": "assistant", "content": reply})
248
+
249
+ output.append({"Mode": "Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
250
+ elif rounded_prediction < 0.5:
251
+ output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": rounded_value, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
252
 
253
  return output
254