tommy24 commited on
Commit
a0a4aff
·
1 Parent(s): fe56189

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -13
app.py CHANGED
@@ -513,14 +513,6 @@ with open("labels.txt", "r") as file:
513
 
514
  messages = [{"role": "system", "content": system}]
515
 
516
- def save_image_as_base64(image_content, file_extension=".png"):
517
- # Encode the image content as base64
518
- image_base64 = base64.b64encode(image_content).decode("utf-8")
519
-
520
- # Construct the data URL
521
- data_url = f"data:image/{file_extension};base64,{image_base64}"
522
- return data_url
523
-
524
  def classify(platform, UserInput, Images, Textbox2, Textbox3):
525
  if Textbox3 == code:
526
  imageData = None
@@ -532,7 +524,10 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
532
  if platform == "wh":
533
  get_image = requests.get(Images, headers=headers)
534
  if get_image.status_code == 200:
535
- # Generate a random ID for the file
 
 
 
536
  random_id = random.randint(1000, 9999)
537
  file_extension = ".png"
538
  filename = f"image_{random_id}{file_extension}"
@@ -543,9 +538,6 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
543
  full_path = os.path.join(os.getcwd(), filename)
544
  print(f"Saved image as: {full_path}")
545
 
546
- # Convert the image content to base64
547
- image_data_url = save_image_as_base64(get_image.content, file_extension)
548
- print(f"Data URL of the image: {image_data_url}")
549
  elif platform == "web":
550
  print("WEB")
551
  # Handle web case if needed
@@ -609,6 +601,7 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
609
  elif max_rounded_prediction < 0.5:
610
  output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
611
 
 
612
  return output
613
  else:
614
  output = []
@@ -648,7 +641,7 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
648
  user_inputs = [
649
  gr.Textbox(label="Platform", type="text"),
650
  gr.Textbox(label="User Input", type="text"),
651
- gr.Textbox(label="Image", type="text"),
652
  gr.Textbox(label="Textbox2", type="text"),
653
  gr.Textbox(label="Textbox3", type="password")
654
  ]
 
513
 
514
  messages = [{"role": "system", "content": system}]
515
 
 
 
 
 
 
 
 
 
516
  def classify(platform, UserInput, Images, Textbox2, Textbox3):
517
  if Textbox3 == code:
518
  imageData = None
 
524
  if platform == "wh":
525
  get_image = requests.get(Images, headers=headers)
526
  if get_image.status_code == 200:
527
+ # Convert the image content to a base64 data URL
528
+ image_base64 = base64.b64encode(get_image.content).decode("utf-8")
529
+ image_data_url = f"data:image/png;base64,{image_base64}"
530
+
531
  random_id = random.randint(1000, 9999)
532
  file_extension = ".png"
533
  filename = f"image_{random_id}{file_extension}"
 
538
  full_path = os.path.join(os.getcwd(), filename)
539
  print(f"Saved image as: {full_path}")
540
 
 
 
 
541
  elif platform == "web":
542
  print("WEB")
543
  # Handle web case if needed
 
601
  elif max_rounded_prediction < 0.5:
602
  output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
603
 
604
+ output.append({"Mode": "Image", "type": "Data URL", "data_url": image_data_url})
605
  return output
606
  else:
607
  output = []
 
641
  user_inputs = [
642
  gr.Textbox(label="Platform", type="text"),
643
  gr.Textbox(label="User Input", type="text"),
644
+ gr.Textbox(label="Images", type="text"),
645
  gr.Textbox(label="Textbox2", type="text"),
646
  gr.Textbox(label="Textbox3", type="password")
647
  ]