tommy24 commited on
Commit
a61193c
·
1 Parent(s): e8f184f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +209 -209
app.py CHANGED
@@ -1,3 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # import gradio as gr
2
  # import numpy as np
3
  # import cv2 as cv
@@ -12,6 +165,7 @@
12
  # state = os.environ.get("state")
13
  # system = os.environ.get("system")
14
  # auth = os.environ.get("auth")
 
15
  # data = None
16
  # model = None
17
  # image = None
@@ -30,12 +184,21 @@
30
  # {"role": "system", "content": system}
31
  # ]
32
 
33
- # def classify(UserInput, Image, Textbox2, Textbox3):
34
  # if Textbox3 == code:
35
- # print("Image: ", Image)
36
  # if Image is not None:
37
  # output = []
38
- # image_data = np.array(Image)
 
 
 
 
 
 
 
 
 
 
39
  # image_data = cv.resize(image_data, (224, 224))
40
  # image_array = np.asarray(image_data)
41
  # normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
@@ -136,8 +299,9 @@
136
  # return "Unauthorized"
137
 
138
  # user_inputs = [
 
139
  # gr.Textbox(label="User Input", type="text"),
140
- # gr.Image(),
141
  # gr.Textbox(label="Textbox2", type="text"),
142
  # gr.Textbox(label="Textbox3", type="password")
143
  # ]
@@ -155,8 +319,11 @@
155
  # import numpy as np
156
  # import cv2 as cv
157
  # import requests
158
- # import time
 
159
  # import os
 
 
160
 
161
  # host = os.environ.get("host")
162
  # code = os.environ.get("code")
@@ -167,14 +334,10 @@
167
  # auth = os.environ.get("auth")
168
  # auth2 = os.environ.get("auth2")
169
  # data = None
170
- # model = None
171
- # image = None
172
- # prediction = None
173
- # labels = None
174
 
175
- # print('START')
176
  # np.set_printoptions(suppress=True)
177
 
 
178
  # data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
179
 
180
  # with open("labels.txt", "r") as file:
@@ -184,117 +347,115 @@
184
  # {"role": "system", "content": system}
185
  # ]
186
 
187
- # def classify(platform,UserInput, Image, Textbox2, Textbox3):
188
  # if Textbox3 == code:
189
- # if Image is not None:
 
190
  # output = []
191
  # headers = {
192
  # "Authorization": f"Bearer {auth2}"
193
  # }
194
  # if platform == "wh":
195
- # get_image = requests.get(Image, headers=headers)
196
- # print(get_image.content)
 
197
  # elif platform == "web":
198
  # print("WEB")
199
  # else:
200
  # pass
201
- # image_data = np.array(get_image)
202
- # image_data = cv.resize(image_data, (224, 224))
203
- # image_array = np.asarray(image_data)
 
204
  # normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
205
  # data[0] = normalized_image_array
206
-
207
- # import tensorflow as tf
208
- # model = tf.keras.models.load_model('keras_model.h5')
209
-
210
- # prediction = model.predict(data)
211
 
 
 
212
  # max_label_index = None
213
  # max_prediction_value = -1
214
-
215
  # print('Prediction')
216
-
217
  # Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
218
  # Textbox2 = Textbox2.split(",")
219
  # Textbox2_edited = [x.strip() for x in Textbox2]
220
  # Textbox2_edited = list(Textbox2_edited)
221
  # Textbox2_edited.append(UserInput)
222
  # messages.append({"role": "user", "content": UserInput})
223
-
224
  # for i, label in enumerate(labels):
225
  # prediction_value = float(prediction[0][i])
226
  # rounded_value = round(prediction_value, 2)
227
  # print(f'{label}: {rounded_value}')
228
-
229
  # if prediction_value > max_prediction_value:
230
  # max_label_index = i
231
- # max_prediction_value = prediction_value
232
-
233
  # if max_label_index is not None:
234
  # max_label = labels[max_label_index].split(' ', 1)[1]
235
  # max_rounded_prediction = round(max_prediction_value, 2)
236
  # print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
237
-
238
- # time.sleep(1)
239
  # if max_rounded_prediction > 0.5:
240
  # print("\nWays to dispose of this waste: " + max_label)
241
  # messages.append({"role": "user", "content": content + " " + max_label})
242
-
243
  # headers = {
244
  # "Content-Type": "application/json",
245
  # "Authorization": f"Bearer {auth}"
246
  # }
247
-
248
  # response = requests.post(host, headers=headers, json={
249
  # "messages": messages,
250
  # "model": model_llm
251
  # }).json()
 
 
252
 
 
253
  # reply = response["choices"][0]["message"]["content"]
254
  # messages.append({"role": "assistant", "content": reply})
255
-
256
  # output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
257
  # elif max_rounded_prediction < 0.5:
258
- # output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
259
-
260
  # return output
261
 
262
  # else:
263
  # output = []
264
-
265
  # Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
266
  # Textbox2 = Textbox2.split(",")
267
  # Textbox2_edited = [x.strip() for x in Textbox2]
268
  # Textbox2_edited = list(Textbox2_edited)
269
  # Textbox2_edited.append(UserInput)
270
-
271
  # for i in Textbox2_edited:
272
- # messages.append(
273
- # {"role": "user", "content": i}
274
- # )
275
-
276
  # print("messages after appending:", messages)
277
-
278
- # time.sleep(1)
279
  # messages.append({"role": "user", "content": UserInput})
280
 
281
  # headers = {
282
  # "Content-Type": "application/json",
283
  # "Authorization": f"Bearer {auth}"
284
  # }
285
-
286
  # response = requests.post(host, headers=headers, json={
287
  # "messages": messages,
288
  # "model": model_llm
289
  # }).json()
290
-
291
  # reply = response["choices"][0]["message"]["content"]
292
  # messages.append({"role": "assistant", "content": reply})
293
 
294
  # output.append({"Mode": "Chat", "content": reply})
295
-
296
- # return output
297
 
 
298
  # else:
299
  # return "Unauthorized"
300
 
@@ -312,168 +473,7 @@
312
  # outputs=gr.outputs.JSON(),
313
  # title="Classifier",
314
  # )
315
- # iface.launch()
316
-
317
-
318
- import gradio as gr
319
- import numpy as np
320
- import cv2 as cv
321
- import requests
322
- import io
323
- from PIL import Image
324
- import os
325
- import tensorflow as tf
326
- import random
327
-
328
- host = os.environ.get("host")
329
- code = os.environ.get("code")
330
- model_llm = os.environ.get("model")
331
- content = os.environ.get("content")
332
- state = os.environ.get("state")
333
- system = os.environ.get("system")
334
- auth = os.environ.get("auth")
335
- auth2 = os.environ.get("auth2")
336
- data = None
337
-
338
- np.set_printoptions(suppress=True)
339
-
340
- model = tf.keras.models.load_model('keras_model.h5')
341
- data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
342
-
343
- with open("labels.txt", "r") as file:
344
- labels = file.read().splitlines()
345
-
346
- messages = [
347
- {"role": "system", "content": system}
348
- ]
349
-
350
- def classify(platform, UserInput, Images, Textbox2, Textbox3):
351
- if Textbox3 == code:
352
- imageData = None
353
- if Images is not None:
354
- output = []
355
- headers = {
356
- "Authorization": f"Bearer {auth2}"
357
- }
358
- if platform == "wh":
359
- get_image = requests.get(Images, headers=headers)
360
- if get_image.status_code == 200:
361
- image_data = get_image.content
362
- elif platform == "web":
363
- print("WEB")
364
- else:
365
- pass
366
-
367
- image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
368
- image = cv.resize(image, (224, 224))
369
- image_array = np.asarray(image)
370
- normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
371
- data[0] = normalized_image_array
372
-
373
- prediction = model.predict(data)
374
-
375
- max_label_index = None
376
- max_prediction_value = -1
377
-
378
- print('Prediction')
379
-
380
- Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
381
- Textbox2 = Textbox2.split(",")
382
- Textbox2_edited = [x.strip() for x in Textbox2]
383
- Textbox2_edited = list(Textbox2_edited)
384
- Textbox2_edited.append(UserInput)
385
- messages.append({"role": "user", "content": UserInput})
386
-
387
- for i, label in enumerate(labels):
388
- prediction_value = float(prediction[0][i])
389
- rounded_value = round(prediction_value, 2)
390
- print(f'{label}: {rounded_value}')
391
-
392
- if prediction_value > max_prediction_value:
393
- max_label_index = i
394
- max_prediction_value = prediction_value
395
-
396
- if max_label_index is not None:
397
- max_label = labels[max_label_index].split(' ', 1)[1]
398
- max_rounded_prediction = round(max_prediction_value, 2)
399
- print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
400
-
401
- if max_rounded_prediction > 0.5:
402
- print("\nWays to dispose of this waste: " + max_label)
403
- messages.append({"role": "user", "content": content + " " + max_label})
404
-
405
- headers = {
406
- "Content-Type": "application/json",
407
- "Authorization": f"Bearer {auth}"
408
- }
409
-
410
- response = requests.post(host, headers=headers, json={
411
- "messages": messages,
412
- "model": model_llm
413
- }).json()
414
-
415
- print(response)
416
-
417
-
418
- reply = response["choices"][0]["message"]["content"]
419
- messages.append({"role": "assistant", "content": reply})
420
-
421
- output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
422
- elif max_rounded_prediction < 0.5:
423
- output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
424
-
425
- return output
426
-
427
- else:
428
- output = []
429
-
430
- Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
431
- Textbox2 = Textbox2.split(",")
432
- Textbox2_edited = [x.strip() for x in Textbox2]
433
- Textbox2_edited = list(Textbox2_edited)
434
- Textbox2_edited.append(UserInput)
435
-
436
- for i in Textbox2_edited:
437
- messages.append({"role": "user", "content": i})
438
-
439
- print("messages after appending:", messages)
440
-
441
- messages.append({"role": "user", "content": UserInput})
442
-
443
- headers = {
444
- "Content-Type": "application/json",
445
- "Authorization": f"Bearer {auth}"
446
- }
447
-
448
- response = requests.post(host, headers=headers, json={
449
- "messages": messages,
450
- "model": model_llm
451
- }).json()
452
-
453
- reply = response["choices"][0]["message"]["content"]
454
- messages.append({"role": "assistant", "content": reply})
455
-
456
- output.append({"Mode": "Chat", "content": reply})
457
-
458
- return output
459
- else:
460
- return "Unauthorized"
461
-
462
- user_inputs = [
463
- gr.Textbox(label="Platform", type="text"),
464
- gr.Textbox(label="User Input", type="text"),
465
- gr.Textbox(label="Image", type="text"),
466
- gr.Textbox(label="Textbox2", type="text"),
467
- gr.Textbox(label="Textbox3", type="password")
468
- ]
469
-
470
- iface = gr.Interface(
471
- fn=classify,
472
- inputs=user_inputs,
473
- outputs=gr.outputs.JSON(),
474
- title="Classifier",
475
- )
476
- iface.launch()
477
 
478
  # import gradio as gr
479
  # import numpy as np
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import cv2 as cv
4
+ import requests
5
+ import time
6
+ import os
7
+
8
+ host = os.environ.get("host")
9
+ code = os.environ.get("code")
10
+ model_llm = os.environ.get("model")
11
+ content = os.environ.get("content")
12
+ state = os.environ.get("state")
13
+ system = os.environ.get("system")
14
+ auth = os.environ.get("auth")
15
+ data = None
16
+ model = None
17
+ image = None
18
+ prediction = None
19
+ labels = None
20
+
21
+ print('START')
22
+ np.set_printoptions(suppress=True)
23
+
24
+ data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
25
+
26
+ with open("labels.txt", "r") as file:
27
+ labels = file.read().splitlines()
28
+
29
+ messages = [
30
+ {"role": "system", "content": system}
31
+ ]
32
+
33
+ def classify(UserInput, Image, Textbox2, Textbox3):
34
+ if Textbox3 == code:
35
+ print("Image: ", Image)
36
+ if Image is not None:
37
+ output = []
38
+ image_data = np.array(Image)
39
+ image_data = cv.resize(image_data, (224, 224))
40
+ image_array = np.asarray(image_data)
41
+ normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
42
+ data[0] = normalized_image_array
43
+
44
+ import tensorflow as tf
45
+ model = tf.keras.models.load_model('keras_model.h5')
46
+
47
+ prediction = model.predict(data)
48
+
49
+ max_label_index = None
50
+ max_prediction_value = -1
51
+
52
+ print('Prediction')
53
+
54
+ Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
55
+ Textbox2 = Textbox2.split(",")
56
+ Textbox2_edited = [x.strip() for x in Textbox2]
57
+ Textbox2_edited = list(Textbox2_edited)
58
+ Textbox2_edited.append(UserInput)
59
+ messages.append({"role": "user", "content": UserInput})
60
+
61
+ for i, label in enumerate(labels):
62
+ prediction_value = float(prediction[0][i])
63
+ rounded_value = round(prediction_value, 2)
64
+ print(f'{label}: {rounded_value}')
65
+
66
+ if prediction_value > max_prediction_value:
67
+ max_label_index = i
68
+ max_prediction_value = prediction_value
69
+
70
+ if max_label_index is not None:
71
+ max_label = labels[max_label_index].split(' ', 1)[1]
72
+ max_rounded_prediction = round(max_prediction_value, 2)
73
+ print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
74
+
75
+ time.sleep(1)
76
+ if max_rounded_prediction > 0.5:
77
+ print("\nWays to dispose of this waste: " + max_label)
78
+ messages.append({"role": "user", "content": content + " " + max_label})
79
+
80
+ headers = {
81
+ "Content-Type": "application/json",
82
+ "Authorization": f"Bearer {auth}"
83
+ }
84
+
85
+ response = requests.post(host, headers=headers, json={
86
+ "messages": messages,
87
+ "model": model_llm
88
+ }).json()
89
+
90
+ reply = response["choices"][0]["message"]["content"]
91
+ messages.append({"role": "assistant", "content": reply})
92
+
93
+ output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
94
+ elif max_rounded_prediction < 0.5:
95
+ output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
96
+
97
+ return output
98
+
99
+ else:
100
+ output = []
101
+
102
+ Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
103
+ Textbox2 = Textbox2.split(",")
104
+ Textbox2_edited = [x.strip() for x in Textbox2]
105
+ Textbox2_edited = list(Textbox2_edited)
106
+ Textbox2_edited.append(UserInput)
107
+
108
+ for i in Textbox2_edited:
109
+ messages.append(
110
+ {"role": "user", "content": i}
111
+ )
112
+
113
+ print("messages after appending:", messages)
114
+
115
+ time.sleep(1)
116
+ messages.append({"role": "user", "content": UserInput})
117
+
118
+ headers = {
119
+ "Content-Type": "application/json",
120
+ "Authorization": f"Bearer {auth}"
121
+ }
122
+
123
+ response = requests.post(host, headers=headers, json={
124
+ "messages": messages,
125
+ "model": model_llm
126
+ }).json()
127
+
128
+ reply = response["choices"][0]["message"]["content"]
129
+ messages.append({"role": "assistant", "content": reply})
130
+
131
+ output.append({"Mode": "Chat", "content": reply})
132
+
133
+ return output
134
+
135
+ else:
136
+ return "Unauthorized"
137
+
138
+ user_inputs = [
139
+ gr.Textbox(label="User Input", type="text"),
140
+ gr.Image(),
141
+ gr.Textbox(label="Textbox2", type="text"),
142
+ gr.Textbox(label="Textbox3", type="password")
143
+ ]
144
+
145
+ iface = gr.Interface(
146
+ fn=classify,
147
+ inputs=user_inputs,
148
+ outputs=gr.outputs.JSON(),
149
+ title="Classifier",
150
+ )
151
+ iface.launch()
152
+
153
+
154
  # import gradio as gr
155
  # import numpy as np
156
  # import cv2 as cv
 
165
  # state = os.environ.get("state")
166
  # system = os.environ.get("system")
167
  # auth = os.environ.get("auth")
168
+ # auth2 = os.environ.get("auth2")
169
  # data = None
170
  # model = None
171
  # image = None
 
184
  # {"role": "system", "content": system}
185
  # ]
186
 
187
+ # def classify(platform,UserInput, Image, Textbox2, Textbox3):
188
  # if Textbox3 == code:
 
189
  # if Image is not None:
190
  # output = []
191
+ # headers = {
192
+ # "Authorization": f"Bearer {auth2}"
193
+ # }
194
+ # if platform == "wh":
195
+ # get_image = requests.get(Image, headers=headers)
196
+ # print(get_image.content)
197
+ # elif platform == "web":
198
+ # print("WEB")
199
+ # else:
200
+ # pass
201
+ # image_data = np.array(get_image)
202
  # image_data = cv.resize(image_data, (224, 224))
203
  # image_array = np.asarray(image_data)
204
  # normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
 
299
  # return "Unauthorized"
300
 
301
  # user_inputs = [
302
+ # gr.Textbox(label="Platform", type="text"),
303
  # gr.Textbox(label="User Input", type="text"),
304
+ # gr.Textbox(label="Image", type="text"),
305
  # gr.Textbox(label="Textbox2", type="text"),
306
  # gr.Textbox(label="Textbox3", type="password")
307
  # ]
 
319
  # import numpy as np
320
  # import cv2 as cv
321
  # import requests
322
+ # import io
323
+ # from PIL import Image
324
  # import os
325
+ # import tensorflow as tf
326
+ # import random
327
 
328
  # host = os.environ.get("host")
329
  # code = os.environ.get("code")
 
334
  # auth = os.environ.get("auth")
335
  # auth2 = os.environ.get("auth2")
336
  # data = None
 
 
 
 
337
 
 
338
  # np.set_printoptions(suppress=True)
339
 
340
+ # model = tf.keras.models.load_model('keras_model.h5')
341
  # data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
342
 
343
  # with open("labels.txt", "r") as file:
 
347
  # {"role": "system", "content": system}
348
  # ]
349
 
350
+ # def classify(platform, UserInput, Images, Textbox2, Textbox3):
351
  # if Textbox3 == code:
352
+ # imageData = None
353
+ # if Images is not None:
354
  # output = []
355
  # headers = {
356
  # "Authorization": f"Bearer {auth2}"
357
  # }
358
  # if platform == "wh":
359
+ # get_image = requests.get(Images, headers=headers)
360
+ # if get_image.status_code == 200:
361
+ # image_data = get_image.content
362
  # elif platform == "web":
363
  # print("WEB")
364
  # else:
365
  # pass
366
+
367
+ # image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
368
+ # image = cv.resize(image, (224, 224))
369
+ # image_array = np.asarray(image)
370
  # normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
371
  # data[0] = normalized_image_array
 
 
 
 
 
372
 
373
+ # prediction = model.predict(data)
374
+
375
  # max_label_index = None
376
  # max_prediction_value = -1
377
+
378
  # print('Prediction')
379
+
380
  # Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
381
  # Textbox2 = Textbox2.split(",")
382
  # Textbox2_edited = [x.strip() for x in Textbox2]
383
  # Textbox2_edited = list(Textbox2_edited)
384
  # Textbox2_edited.append(UserInput)
385
  # messages.append({"role": "user", "content": UserInput})
386
+
387
  # for i, label in enumerate(labels):
388
  # prediction_value = float(prediction[0][i])
389
  # rounded_value = round(prediction_value, 2)
390
  # print(f'{label}: {rounded_value}')
391
+
392
  # if prediction_value > max_prediction_value:
393
  # max_label_index = i
394
+ # max_prediction_value = prediction_value
395
+
396
  # if max_label_index is not None:
397
  # max_label = labels[max_label_index].split(' ', 1)[1]
398
  # max_rounded_prediction = round(max_prediction_value, 2)
399
  # print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
400
+
 
401
  # if max_rounded_prediction > 0.5:
402
  # print("\nWays to dispose of this waste: " + max_label)
403
  # messages.append({"role": "user", "content": content + " " + max_label})
404
+
405
  # headers = {
406
  # "Content-Type": "application/json",
407
  # "Authorization": f"Bearer {auth}"
408
  # }
409
+
410
  # response = requests.post(host, headers=headers, json={
411
  # "messages": messages,
412
  # "model": model_llm
413
  # }).json()
414
+
415
+ # print(response)
416
 
417
+
418
  # reply = response["choices"][0]["message"]["content"]
419
  # messages.append({"role": "assistant", "content": reply})
420
+
421
  # output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
422
  # elif max_rounded_prediction < 0.5:
423
+ # output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
424
+
425
  # return output
426
 
427
  # else:
428
  # output = []
429
+
430
  # Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
431
  # Textbox2 = Textbox2.split(",")
432
  # Textbox2_edited = [x.strip() for x in Textbox2]
433
  # Textbox2_edited = list(Textbox2_edited)
434
  # Textbox2_edited.append(UserInput)
435
+
436
  # for i in Textbox2_edited:
437
+ # messages.append({"role": "user", "content": i})
438
+
 
 
439
  # print("messages after appending:", messages)
440
+
 
441
  # messages.append({"role": "user", "content": UserInput})
442
 
443
  # headers = {
444
  # "Content-Type": "application/json",
445
  # "Authorization": f"Bearer {auth}"
446
  # }
447
+
448
  # response = requests.post(host, headers=headers, json={
449
  # "messages": messages,
450
  # "model": model_llm
451
  # }).json()
452
+
453
  # reply = response["choices"][0]["message"]["content"]
454
  # messages.append({"role": "assistant", "content": reply})
455
 
456
  # output.append({"Mode": "Chat", "content": reply})
 
 
457
 
458
+ # return output
459
  # else:
460
  # return "Unauthorized"
461
 
 
473
  # outputs=gr.outputs.JSON(),
474
  # title="Classifier",
475
  # )
476
+ # # iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477
 
478
  # import gradio as gr
479
  # import numpy as np