Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# import gradio as gr
|
2 |
# import numpy as np
|
3 |
# import cv2 as cv
|
@@ -12,6 +165,7 @@
|
|
12 |
# state = os.environ.get("state")
|
13 |
# system = os.environ.get("system")
|
14 |
# auth = os.environ.get("auth")
|
|
|
15 |
# data = None
|
16 |
# model = None
|
17 |
# image = None
|
@@ -30,12 +184,21 @@
|
|
30 |
# {"role": "system", "content": system}
|
31 |
# ]
|
32 |
|
33 |
-
# def classify(UserInput, Image, Textbox2, Textbox3):
|
34 |
# if Textbox3 == code:
|
35 |
-
# print("Image: ", Image)
|
36 |
# if Image is not None:
|
37 |
# output = []
|
38 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# image_data = cv.resize(image_data, (224, 224))
|
40 |
# image_array = np.asarray(image_data)
|
41 |
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
@@ -136,8 +299,9 @@
|
|
136 |
# return "Unauthorized"
|
137 |
|
138 |
# user_inputs = [
|
|
|
139 |
# gr.Textbox(label="User Input", type="text"),
|
140 |
-
# gr.Image
|
141 |
# gr.Textbox(label="Textbox2", type="text"),
|
142 |
# gr.Textbox(label="Textbox3", type="password")
|
143 |
# ]
|
@@ -155,8 +319,11 @@
|
|
155 |
# import numpy as np
|
156 |
# import cv2 as cv
|
157 |
# import requests
|
158 |
-
# import
|
|
|
159 |
# import os
|
|
|
|
|
160 |
|
161 |
# host = os.environ.get("host")
|
162 |
# code = os.environ.get("code")
|
@@ -167,14 +334,10 @@
|
|
167 |
# auth = os.environ.get("auth")
|
168 |
# auth2 = os.environ.get("auth2")
|
169 |
# data = None
|
170 |
-
# model = None
|
171 |
-
# image = None
|
172 |
-
# prediction = None
|
173 |
-
# labels = None
|
174 |
|
175 |
-
# print('START')
|
176 |
# np.set_printoptions(suppress=True)
|
177 |
|
|
|
178 |
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
179 |
|
180 |
# with open("labels.txt", "r") as file:
|
@@ -184,117 +347,115 @@
|
|
184 |
# {"role": "system", "content": system}
|
185 |
# ]
|
186 |
|
187 |
-
# def classify(platform,UserInput,
|
188 |
# if Textbox3 == code:
|
189 |
-
#
|
|
|
190 |
# output = []
|
191 |
# headers = {
|
192 |
# "Authorization": f"Bearer {auth2}"
|
193 |
# }
|
194 |
# if platform == "wh":
|
195 |
-
# get_image = requests.get(
|
196 |
-
#
|
|
|
197 |
# elif platform == "web":
|
198 |
# print("WEB")
|
199 |
# else:
|
200 |
# pass
|
201 |
-
|
202 |
-
#
|
203 |
-
#
|
|
|
204 |
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
205 |
# data[0] = normalized_image_array
|
206 |
-
|
207 |
-
# import tensorflow as tf
|
208 |
-
# model = tf.keras.models.load_model('keras_model.h5')
|
209 |
-
|
210 |
-
# prediction = model.predict(data)
|
211 |
|
|
|
|
|
212 |
# max_label_index = None
|
213 |
# max_prediction_value = -1
|
214 |
-
|
215 |
# print('Prediction')
|
216 |
-
|
217 |
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
218 |
# Textbox2 = Textbox2.split(",")
|
219 |
# Textbox2_edited = [x.strip() for x in Textbox2]
|
220 |
# Textbox2_edited = list(Textbox2_edited)
|
221 |
# Textbox2_edited.append(UserInput)
|
222 |
# messages.append({"role": "user", "content": UserInput})
|
223 |
-
|
224 |
# for i, label in enumerate(labels):
|
225 |
# prediction_value = float(prediction[0][i])
|
226 |
# rounded_value = round(prediction_value, 2)
|
227 |
# print(f'{label}: {rounded_value}')
|
228 |
-
|
229 |
# if prediction_value > max_prediction_value:
|
230 |
# max_label_index = i
|
231 |
-
# max_prediction_value = prediction_value
|
232 |
-
|
233 |
# if max_label_index is not None:
|
234 |
# max_label = labels[max_label_index].split(' ', 1)[1]
|
235 |
# max_rounded_prediction = round(max_prediction_value, 2)
|
236 |
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
237 |
-
|
238 |
-
# time.sleep(1)
|
239 |
# if max_rounded_prediction > 0.5:
|
240 |
# print("\nWays to dispose of this waste: " + max_label)
|
241 |
# messages.append({"role": "user", "content": content + " " + max_label})
|
242 |
-
|
243 |
# headers = {
|
244 |
# "Content-Type": "application/json",
|
245 |
# "Authorization": f"Bearer {auth}"
|
246 |
# }
|
247 |
-
|
248 |
# response = requests.post(host, headers=headers, json={
|
249 |
# "messages": messages,
|
250 |
# "model": model_llm
|
251 |
# }).json()
|
|
|
|
|
252 |
|
|
|
253 |
# reply = response["choices"][0]["message"]["content"]
|
254 |
# messages.append({"role": "assistant", "content": reply})
|
255 |
-
|
256 |
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
257 |
# elif max_rounded_prediction < 0.5:
|
258 |
-
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one
|
259 |
-
|
260 |
# return output
|
261 |
|
262 |
# else:
|
263 |
# output = []
|
264 |
-
|
265 |
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
266 |
# Textbox2 = Textbox2.split(",")
|
267 |
# Textbox2_edited = [x.strip() for x in Textbox2]
|
268 |
# Textbox2_edited = list(Textbox2_edited)
|
269 |
# Textbox2_edited.append(UserInput)
|
270 |
-
|
271 |
# for i in Textbox2_edited:
|
272 |
-
# messages.append(
|
273 |
-
|
274 |
-
# )
|
275 |
-
|
276 |
# print("messages after appending:", messages)
|
277 |
-
|
278 |
-
# time.sleep(1)
|
279 |
# messages.append({"role": "user", "content": UserInput})
|
280 |
|
281 |
# headers = {
|
282 |
# "Content-Type": "application/json",
|
283 |
# "Authorization": f"Bearer {auth}"
|
284 |
# }
|
285 |
-
|
286 |
# response = requests.post(host, headers=headers, json={
|
287 |
# "messages": messages,
|
288 |
# "model": model_llm
|
289 |
# }).json()
|
290 |
-
|
291 |
# reply = response["choices"][0]["message"]["content"]
|
292 |
# messages.append({"role": "assistant", "content": reply})
|
293 |
|
294 |
# output.append({"Mode": "Chat", "content": reply})
|
295 |
-
|
296 |
-
# return output
|
297 |
|
|
|
298 |
# else:
|
299 |
# return "Unauthorized"
|
300 |
|
@@ -312,168 +473,7 @@
|
|
312 |
# outputs=gr.outputs.JSON(),
|
313 |
# title="Classifier",
|
314 |
# )
|
315 |
-
# iface.launch()
|
316 |
-
|
317 |
-
|
318 |
-
import gradio as gr
|
319 |
-
import numpy as np
|
320 |
-
import cv2 as cv
|
321 |
-
import requests
|
322 |
-
import io
|
323 |
-
from PIL import Image
|
324 |
-
import os
|
325 |
-
import tensorflow as tf
|
326 |
-
import random
|
327 |
-
|
328 |
-
host = os.environ.get("host")
|
329 |
-
code = os.environ.get("code")
|
330 |
-
model_llm = os.environ.get("model")
|
331 |
-
content = os.environ.get("content")
|
332 |
-
state = os.environ.get("state")
|
333 |
-
system = os.environ.get("system")
|
334 |
-
auth = os.environ.get("auth")
|
335 |
-
auth2 = os.environ.get("auth2")
|
336 |
-
data = None
|
337 |
-
|
338 |
-
np.set_printoptions(suppress=True)
|
339 |
-
|
340 |
-
model = tf.keras.models.load_model('keras_model.h5')
|
341 |
-
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
342 |
-
|
343 |
-
with open("labels.txt", "r") as file:
|
344 |
-
labels = file.read().splitlines()
|
345 |
-
|
346 |
-
messages = [
|
347 |
-
{"role": "system", "content": system}
|
348 |
-
]
|
349 |
-
|
350 |
-
def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
351 |
-
if Textbox3 == code:
|
352 |
-
imageData = None
|
353 |
-
if Images is not None:
|
354 |
-
output = []
|
355 |
-
headers = {
|
356 |
-
"Authorization": f"Bearer {auth2}"
|
357 |
-
}
|
358 |
-
if platform == "wh":
|
359 |
-
get_image = requests.get(Images, headers=headers)
|
360 |
-
if get_image.status_code == 200:
|
361 |
-
image_data = get_image.content
|
362 |
-
elif platform == "web":
|
363 |
-
print("WEB")
|
364 |
-
else:
|
365 |
-
pass
|
366 |
-
|
367 |
-
image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
|
368 |
-
image = cv.resize(image, (224, 224))
|
369 |
-
image_array = np.asarray(image)
|
370 |
-
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
371 |
-
data[0] = normalized_image_array
|
372 |
-
|
373 |
-
prediction = model.predict(data)
|
374 |
-
|
375 |
-
max_label_index = None
|
376 |
-
max_prediction_value = -1
|
377 |
-
|
378 |
-
print('Prediction')
|
379 |
-
|
380 |
-
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
381 |
-
Textbox2 = Textbox2.split(",")
|
382 |
-
Textbox2_edited = [x.strip() for x in Textbox2]
|
383 |
-
Textbox2_edited = list(Textbox2_edited)
|
384 |
-
Textbox2_edited.append(UserInput)
|
385 |
-
messages.append({"role": "user", "content": UserInput})
|
386 |
-
|
387 |
-
for i, label in enumerate(labels):
|
388 |
-
prediction_value = float(prediction[0][i])
|
389 |
-
rounded_value = round(prediction_value, 2)
|
390 |
-
print(f'{label}: {rounded_value}')
|
391 |
-
|
392 |
-
if prediction_value > max_prediction_value:
|
393 |
-
max_label_index = i
|
394 |
-
max_prediction_value = prediction_value
|
395 |
-
|
396 |
-
if max_label_index is not None:
|
397 |
-
max_label = labels[max_label_index].split(' ', 1)[1]
|
398 |
-
max_rounded_prediction = round(max_prediction_value, 2)
|
399 |
-
print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
400 |
-
|
401 |
-
if max_rounded_prediction > 0.5:
|
402 |
-
print("\nWays to dispose of this waste: " + max_label)
|
403 |
-
messages.append({"role": "user", "content": content + " " + max_label})
|
404 |
-
|
405 |
-
headers = {
|
406 |
-
"Content-Type": "application/json",
|
407 |
-
"Authorization": f"Bearer {auth}"
|
408 |
-
}
|
409 |
-
|
410 |
-
response = requests.post(host, headers=headers, json={
|
411 |
-
"messages": messages,
|
412 |
-
"model": model_llm
|
413 |
-
}).json()
|
414 |
-
|
415 |
-
print(response)
|
416 |
-
|
417 |
-
|
418 |
-
reply = response["choices"][0]["message"]["content"]
|
419 |
-
messages.append({"role": "assistant", "content": reply})
|
420 |
-
|
421 |
-
output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
422 |
-
elif max_rounded_prediction < 0.5:
|
423 |
-
output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
|
424 |
-
|
425 |
-
return output
|
426 |
-
|
427 |
-
else:
|
428 |
-
output = []
|
429 |
-
|
430 |
-
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
431 |
-
Textbox2 = Textbox2.split(",")
|
432 |
-
Textbox2_edited = [x.strip() for x in Textbox2]
|
433 |
-
Textbox2_edited = list(Textbox2_edited)
|
434 |
-
Textbox2_edited.append(UserInput)
|
435 |
-
|
436 |
-
for i in Textbox2_edited:
|
437 |
-
messages.append({"role": "user", "content": i})
|
438 |
-
|
439 |
-
print("messages after appending:", messages)
|
440 |
-
|
441 |
-
messages.append({"role": "user", "content": UserInput})
|
442 |
-
|
443 |
-
headers = {
|
444 |
-
"Content-Type": "application/json",
|
445 |
-
"Authorization": f"Bearer {auth}"
|
446 |
-
}
|
447 |
-
|
448 |
-
response = requests.post(host, headers=headers, json={
|
449 |
-
"messages": messages,
|
450 |
-
"model": model_llm
|
451 |
-
}).json()
|
452 |
-
|
453 |
-
reply = response["choices"][0]["message"]["content"]
|
454 |
-
messages.append({"role": "assistant", "content": reply})
|
455 |
-
|
456 |
-
output.append({"Mode": "Chat", "content": reply})
|
457 |
-
|
458 |
-
return output
|
459 |
-
else:
|
460 |
-
return "Unauthorized"
|
461 |
-
|
462 |
-
user_inputs = [
|
463 |
-
gr.Textbox(label="Platform", type="text"),
|
464 |
-
gr.Textbox(label="User Input", type="text"),
|
465 |
-
gr.Textbox(label="Image", type="text"),
|
466 |
-
gr.Textbox(label="Textbox2", type="text"),
|
467 |
-
gr.Textbox(label="Textbox3", type="password")
|
468 |
-
]
|
469 |
-
|
470 |
-
iface = gr.Interface(
|
471 |
-
fn=classify,
|
472 |
-
inputs=user_inputs,
|
473 |
-
outputs=gr.outputs.JSON(),
|
474 |
-
title="Classifier",
|
475 |
-
)
|
476 |
-
iface.launch()
|
477 |
|
478 |
# import gradio as gr
|
479 |
# import numpy as np
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2 as cv
|
4 |
+
import requests
|
5 |
+
import time
|
6 |
+
import os
|
7 |
+
|
8 |
+
host = os.environ.get("host")
|
9 |
+
code = os.environ.get("code")
|
10 |
+
model_llm = os.environ.get("model")
|
11 |
+
content = os.environ.get("content")
|
12 |
+
state = os.environ.get("state")
|
13 |
+
system = os.environ.get("system")
|
14 |
+
auth = os.environ.get("auth")
|
15 |
+
data = None
|
16 |
+
model = None
|
17 |
+
image = None
|
18 |
+
prediction = None
|
19 |
+
labels = None
|
20 |
+
|
21 |
+
print('START')
|
22 |
+
np.set_printoptions(suppress=True)
|
23 |
+
|
24 |
+
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
25 |
+
|
26 |
+
with open("labels.txt", "r") as file:
|
27 |
+
labels = file.read().splitlines()
|
28 |
+
|
29 |
+
messages = [
|
30 |
+
{"role": "system", "content": system}
|
31 |
+
]
|
32 |
+
|
33 |
+
def classify(UserInput, Image, Textbox2, Textbox3):
|
34 |
+
if Textbox3 == code:
|
35 |
+
print("Image: ", Image)
|
36 |
+
if Image is not None:
|
37 |
+
output = []
|
38 |
+
image_data = np.array(Image)
|
39 |
+
image_data = cv.resize(image_data, (224, 224))
|
40 |
+
image_array = np.asarray(image_data)
|
41 |
+
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
42 |
+
data[0] = normalized_image_array
|
43 |
+
|
44 |
+
import tensorflow as tf
|
45 |
+
model = tf.keras.models.load_model('keras_model.h5')
|
46 |
+
|
47 |
+
prediction = model.predict(data)
|
48 |
+
|
49 |
+
max_label_index = None
|
50 |
+
max_prediction_value = -1
|
51 |
+
|
52 |
+
print('Prediction')
|
53 |
+
|
54 |
+
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
55 |
+
Textbox2 = Textbox2.split(",")
|
56 |
+
Textbox2_edited = [x.strip() for x in Textbox2]
|
57 |
+
Textbox2_edited = list(Textbox2_edited)
|
58 |
+
Textbox2_edited.append(UserInput)
|
59 |
+
messages.append({"role": "user", "content": UserInput})
|
60 |
+
|
61 |
+
for i, label in enumerate(labels):
|
62 |
+
prediction_value = float(prediction[0][i])
|
63 |
+
rounded_value = round(prediction_value, 2)
|
64 |
+
print(f'{label}: {rounded_value}')
|
65 |
+
|
66 |
+
if prediction_value > max_prediction_value:
|
67 |
+
max_label_index = i
|
68 |
+
max_prediction_value = prediction_value
|
69 |
+
|
70 |
+
if max_label_index is not None:
|
71 |
+
max_label = labels[max_label_index].split(' ', 1)[1]
|
72 |
+
max_rounded_prediction = round(max_prediction_value, 2)
|
73 |
+
print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
74 |
+
|
75 |
+
time.sleep(1)
|
76 |
+
if max_rounded_prediction > 0.5:
|
77 |
+
print("\nWays to dispose of this waste: " + max_label)
|
78 |
+
messages.append({"role": "user", "content": content + " " + max_label})
|
79 |
+
|
80 |
+
headers = {
|
81 |
+
"Content-Type": "application/json",
|
82 |
+
"Authorization": f"Bearer {auth}"
|
83 |
+
}
|
84 |
+
|
85 |
+
response = requests.post(host, headers=headers, json={
|
86 |
+
"messages": messages,
|
87 |
+
"model": model_llm
|
88 |
+
}).json()
|
89 |
+
|
90 |
+
reply = response["choices"][0]["message"]["content"]
|
91 |
+
messages.append({"role": "assistant", "content": reply})
|
92 |
+
|
93 |
+
output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
94 |
+
elif max_rounded_prediction < 0.5:
|
95 |
+
output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
|
96 |
+
|
97 |
+
return output
|
98 |
+
|
99 |
+
else:
|
100 |
+
output = []
|
101 |
+
|
102 |
+
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
103 |
+
Textbox2 = Textbox2.split(",")
|
104 |
+
Textbox2_edited = [x.strip() for x in Textbox2]
|
105 |
+
Textbox2_edited = list(Textbox2_edited)
|
106 |
+
Textbox2_edited.append(UserInput)
|
107 |
+
|
108 |
+
for i in Textbox2_edited:
|
109 |
+
messages.append(
|
110 |
+
{"role": "user", "content": i}
|
111 |
+
)
|
112 |
+
|
113 |
+
print("messages after appending:", messages)
|
114 |
+
|
115 |
+
time.sleep(1)
|
116 |
+
messages.append({"role": "user", "content": UserInput})
|
117 |
+
|
118 |
+
headers = {
|
119 |
+
"Content-Type": "application/json",
|
120 |
+
"Authorization": f"Bearer {auth}"
|
121 |
+
}
|
122 |
+
|
123 |
+
response = requests.post(host, headers=headers, json={
|
124 |
+
"messages": messages,
|
125 |
+
"model": model_llm
|
126 |
+
}).json()
|
127 |
+
|
128 |
+
reply = response["choices"][0]["message"]["content"]
|
129 |
+
messages.append({"role": "assistant", "content": reply})
|
130 |
+
|
131 |
+
output.append({"Mode": "Chat", "content": reply})
|
132 |
+
|
133 |
+
return output
|
134 |
+
|
135 |
+
else:
|
136 |
+
return "Unauthorized"
|
137 |
+
|
138 |
+
user_inputs = [
|
139 |
+
gr.Textbox(label="User Input", type="text"),
|
140 |
+
gr.Image(),
|
141 |
+
gr.Textbox(label="Textbox2", type="text"),
|
142 |
+
gr.Textbox(label="Textbox3", type="password")
|
143 |
+
]
|
144 |
+
|
145 |
+
iface = gr.Interface(
|
146 |
+
fn=classify,
|
147 |
+
inputs=user_inputs,
|
148 |
+
outputs=gr.outputs.JSON(),
|
149 |
+
title="Classifier",
|
150 |
+
)
|
151 |
+
iface.launch()
|
152 |
+
|
153 |
+
|
154 |
# import gradio as gr
|
155 |
# import numpy as np
|
156 |
# import cv2 as cv
|
|
|
165 |
# state = os.environ.get("state")
|
166 |
# system = os.environ.get("system")
|
167 |
# auth = os.environ.get("auth")
|
168 |
+
# auth2 = os.environ.get("auth2")
|
169 |
# data = None
|
170 |
# model = None
|
171 |
# image = None
|
|
|
184 |
# {"role": "system", "content": system}
|
185 |
# ]
|
186 |
|
187 |
+
# def classify(platform,UserInput, Image, Textbox2, Textbox3):
|
188 |
# if Textbox3 == code:
|
|
|
189 |
# if Image is not None:
|
190 |
# output = []
|
191 |
+
# headers = {
|
192 |
+
# "Authorization": f"Bearer {auth2}"
|
193 |
+
# }
|
194 |
+
# if platform == "wh":
|
195 |
+
# get_image = requests.get(Image, headers=headers)
|
196 |
+
# print(get_image.content)
|
197 |
+
# elif platform == "web":
|
198 |
+
# print("WEB")
|
199 |
+
# else:
|
200 |
+
# pass
|
201 |
+
# image_data = np.array(get_image)
|
202 |
# image_data = cv.resize(image_data, (224, 224))
|
203 |
# image_array = np.asarray(image_data)
|
204 |
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
|
|
299 |
# return "Unauthorized"
|
300 |
|
301 |
# user_inputs = [
|
302 |
+
# gr.Textbox(label="Platform", type="text"),
|
303 |
# gr.Textbox(label="User Input", type="text"),
|
304 |
+
# gr.Textbox(label="Image", type="text"),
|
305 |
# gr.Textbox(label="Textbox2", type="text"),
|
306 |
# gr.Textbox(label="Textbox3", type="password")
|
307 |
# ]
|
|
|
319 |
# import numpy as np
|
320 |
# import cv2 as cv
|
321 |
# import requests
|
322 |
+
# import io
|
323 |
+
# from PIL import Image
|
324 |
# import os
|
325 |
+
# import tensorflow as tf
|
326 |
+
# import random
|
327 |
|
328 |
# host = os.environ.get("host")
|
329 |
# code = os.environ.get("code")
|
|
|
334 |
# auth = os.environ.get("auth")
|
335 |
# auth2 = os.environ.get("auth2")
|
336 |
# data = None
|
|
|
|
|
|
|
|
|
337 |
|
|
|
338 |
# np.set_printoptions(suppress=True)
|
339 |
|
340 |
+
# model = tf.keras.models.load_model('keras_model.h5')
|
341 |
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
342 |
|
343 |
# with open("labels.txt", "r") as file:
|
|
|
347 |
# {"role": "system", "content": system}
|
348 |
# ]
|
349 |
|
350 |
+
# def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
351 |
# if Textbox3 == code:
|
352 |
+
# imageData = None
|
353 |
+
# if Images is not None:
|
354 |
# output = []
|
355 |
# headers = {
|
356 |
# "Authorization": f"Bearer {auth2}"
|
357 |
# }
|
358 |
# if platform == "wh":
|
359 |
+
# get_image = requests.get(Images, headers=headers)
|
360 |
+
# if get_image.status_code == 200:
|
361 |
+
# image_data = get_image.content
|
362 |
# elif platform == "web":
|
363 |
# print("WEB")
|
364 |
# else:
|
365 |
# pass
|
366 |
+
|
367 |
+
# image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
|
368 |
+
# image = cv.resize(image, (224, 224))
|
369 |
+
# image_array = np.asarray(image)
|
370 |
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
371 |
# data[0] = normalized_image_array
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
+
# prediction = model.predict(data)
|
374 |
+
|
375 |
# max_label_index = None
|
376 |
# max_prediction_value = -1
|
377 |
+
|
378 |
# print('Prediction')
|
379 |
+
|
380 |
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
381 |
# Textbox2 = Textbox2.split(",")
|
382 |
# Textbox2_edited = [x.strip() for x in Textbox2]
|
383 |
# Textbox2_edited = list(Textbox2_edited)
|
384 |
# Textbox2_edited.append(UserInput)
|
385 |
# messages.append({"role": "user", "content": UserInput})
|
386 |
+
|
387 |
# for i, label in enumerate(labels):
|
388 |
# prediction_value = float(prediction[0][i])
|
389 |
# rounded_value = round(prediction_value, 2)
|
390 |
# print(f'{label}: {rounded_value}')
|
391 |
+
|
392 |
# if prediction_value > max_prediction_value:
|
393 |
# max_label_index = i
|
394 |
+
# max_prediction_value = prediction_value
|
395 |
+
|
396 |
# if max_label_index is not None:
|
397 |
# max_label = labels[max_label_index].split(' ', 1)[1]
|
398 |
# max_rounded_prediction = round(max_prediction_value, 2)
|
399 |
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
400 |
+
|
|
|
401 |
# if max_rounded_prediction > 0.5:
|
402 |
# print("\nWays to dispose of this waste: " + max_label)
|
403 |
# messages.append({"role": "user", "content": content + " " + max_label})
|
404 |
+
|
405 |
# headers = {
|
406 |
# "Content-Type": "application/json",
|
407 |
# "Authorization": f"Bearer {auth}"
|
408 |
# }
|
409 |
+
|
410 |
# response = requests.post(host, headers=headers, json={
|
411 |
# "messages": messages,
|
412 |
# "model": model_llm
|
413 |
# }).json()
|
414 |
+
|
415 |
+
# print(response)
|
416 |
|
417 |
+
|
418 |
# reply = response["choices"][0]["message"]["content"]
|
419 |
# messages.append({"role": "assistant", "content": reply})
|
420 |
+
|
421 |
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
422 |
# elif max_rounded_prediction < 0.5:
|
423 |
+
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
|
424 |
+
|
425 |
# return output
|
426 |
|
427 |
# else:
|
428 |
# output = []
|
429 |
+
|
430 |
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
431 |
# Textbox2 = Textbox2.split(",")
|
432 |
# Textbox2_edited = [x.strip() for x in Textbox2]
|
433 |
# Textbox2_edited = list(Textbox2_edited)
|
434 |
# Textbox2_edited.append(UserInput)
|
435 |
+
|
436 |
# for i in Textbox2_edited:
|
437 |
+
# messages.append({"role": "user", "content": i})
|
438 |
+
|
|
|
|
|
439 |
# print("messages after appending:", messages)
|
440 |
+
|
|
|
441 |
# messages.append({"role": "user", "content": UserInput})
|
442 |
|
443 |
# headers = {
|
444 |
# "Content-Type": "application/json",
|
445 |
# "Authorization": f"Bearer {auth}"
|
446 |
# }
|
447 |
+
|
448 |
# response = requests.post(host, headers=headers, json={
|
449 |
# "messages": messages,
|
450 |
# "model": model_llm
|
451 |
# }).json()
|
452 |
+
|
453 |
# reply = response["choices"][0]["message"]["content"]
|
454 |
# messages.append({"role": "assistant", "content": reply})
|
455 |
|
456 |
# output.append({"Mode": "Chat", "content": reply})
|
|
|
|
|
457 |
|
458 |
+
# return output
|
459 |
# else:
|
460 |
# return "Unauthorized"
|
461 |
|
|
|
473 |
# outputs=gr.outputs.JSON(),
|
474 |
# title="Classifier",
|
475 |
# )
|
476 |
+
# # iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
|
478 |
# import gradio as gr
|
479 |
# import numpy as np
|