Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -24,16 +24,15 @@ data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
|
24 |
with open("labels.txt", "r") as file:
|
25 |
labels = file.read().splitlines()
|
26 |
|
27 |
-
def classify(image_path,
|
28 |
-
if
|
29 |
-
output = []
|
30 |
image_data = np.array(image_path)
|
31 |
image_data = cv.resize(image_data, (224, 224))
|
32 |
image_array = np.asarray(image_data)
|
33 |
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
34 |
data[0] = normalized_image_array
|
35 |
|
36 |
-
# Load the model within the classify function
|
37 |
import tensorflow as tf
|
38 |
model = tf.keras.models.load_model('keras_model.h5')
|
39 |
|
@@ -43,6 +42,20 @@ def classify(image_path, text_input):
|
|
43 |
max_prediction_value = -1
|
44 |
|
45 |
print('Prediction')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
for i, label in enumerate(labels):
|
48 |
prediction_value = float(prediction[0][i])
|
@@ -51,7 +64,7 @@ def classify(image_path, text_input):
|
|
51 |
|
52 |
if prediction_value > max_prediction_value:
|
53 |
max_label_index = i
|
54 |
-
max_prediction_value = prediction_value
|
55 |
|
56 |
if max_label_index is not None:
|
57 |
max_label = labels[max_label_index].split(' ', 1)[1]
|
@@ -59,10 +72,9 @@ def classify(image_path, text_input):
|
|
59 |
|
60 |
time.sleep(1)
|
61 |
print("\nWays to dispose of this waste: " + max_label)
|
62 |
-
|
63 |
-
{"role": "
|
64 |
-
|
65 |
-
]
|
66 |
|
67 |
response = requests.post(host, json={
|
68 |
"messages": payload,
|
@@ -74,17 +86,23 @@ def classify(image_path, text_input):
|
|
74 |
}).json()
|
75 |
|
76 |
reply = response["choices"][0]["message"]["content"]
|
|
|
77 |
|
78 |
output.append({"type": max_label, "prediction_value": rounded_value, "content": reply})
|
79 |
|
80 |
-
return output
|
81 |
else:
|
82 |
return "Unauthorized"
|
83 |
|
84 |
iface = gr.Interface(
|
85 |
fn=classify,
|
86 |
-
inputs=[
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
88 |
title="Waste Classifier",
|
89 |
description="Upload an image to classify and get disposal instructions."
|
90 |
)
|
|
|
24 |
with open("labels.txt", "r") as file:
|
25 |
labels = file.read().splitlines()
|
26 |
|
27 |
+
def classify(image_path, Textbox2, Textbox3):
|
28 |
+
if Textbox3 == code:
|
29 |
+
output = []
|
30 |
image_data = np.array(image_path)
|
31 |
image_data = cv.resize(image_data, (224, 224))
|
32 |
image_array = np.asarray(image_data)
|
33 |
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
34 |
data[0] = normalized_image_array
|
35 |
|
|
|
36 |
import tensorflow as tf
|
37 |
model = tf.keras.models.load_model('keras_model.h5')
|
38 |
|
|
|
42 |
max_prediction_value = -1
|
43 |
|
44 |
print('Prediction')
|
45 |
+
|
46 |
+
|
47 |
+
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
48 |
+
Textbox2 = Textbox2.split(",")
|
49 |
+
Textbox2_edited = [x.strip() for x in Textbox2]
|
50 |
+
Textbox2_edited = list(Textbox2_edited)
|
51 |
+
Textbox2_edited.append(Textbox)
|
52 |
+
messages = [
|
53 |
+
{"role": "system", "content": content},
|
54 |
+
]
|
55 |
+
for i in Textbox2_edited:
|
56 |
+
messages.append(
|
57 |
+
{"role": "user", "content": i}
|
58 |
+
)
|
59 |
|
60 |
for i, label in enumerate(labels):
|
61 |
prediction_value = float(prediction[0][i])
|
|
|
64 |
|
65 |
if prediction_value > max_prediction_value:
|
66 |
max_label_index = i
|
67 |
+
max_prediction_value = prediction_value
|
68 |
|
69 |
if max_label_index is not None:
|
70 |
max_label = labels[max_label_index].split(' ', 1)[1]
|
|
|
72 |
|
73 |
time.sleep(1)
|
74 |
print("\nWays to dispose of this waste: " + max_label)
|
75 |
+
messages.append(
|
76 |
+
{"role": "user", "content": Textbox},
|
77 |
+
)
|
|
|
78 |
|
79 |
response = requests.post(host, json={
|
80 |
"messages": payload,
|
|
|
86 |
}).json()
|
87 |
|
88 |
reply = response["choices"][0]["message"]["content"]
|
89 |
+
messages.append({"role": "assistant", "content": reply})
|
90 |
|
91 |
output.append({"type": max_label, "prediction_value": rounded_value, "content": reply})
|
92 |
|
93 |
+
return output
|
94 |
else:
|
95 |
return "Unauthorized"
|
96 |
|
97 |
iface = gr.Interface(
|
98 |
fn=classify,
|
99 |
+
inputs = [
|
100 |
+
gr.inputs.Image(),
|
101 |
+
gr.inputs.Textbox(label="Textbox2",type="text"),
|
102 |
+
gr.inputs.Textbox(label="Textbox3",type="password")
|
103 |
+
]
|
104 |
+
|
105 |
+
outputs=gr.outputs.JSON(),
|
106 |
title="Waste Classifier",
|
107 |
description="Upload an image to classify and get disposal instructions."
|
108 |
)
|