Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -319,6 +319,7 @@ import gradio as gr
|
|
319 |
import numpy as np
|
320 |
import cv2 as cv
|
321 |
import requests
|
|
|
322 |
import os
|
323 |
import tensorflow as tf
|
324 |
|
@@ -356,19 +357,27 @@ def classify(platform, UserInput, Image, Textbox2, Textbox3):
|
|
356 |
if platform == "wh":
|
357 |
get_image = requests.get(Image, headers=headers)
|
358 |
if get_image.status_code == 200:
|
359 |
-
print(get_image.content)
|
360 |
-
imageData = cv.imdecode(np.asarray(bytearray(get_image.content), dtype="uint8"), cv.IMREAD_COLOR)
|
|
|
|
|
|
|
361 |
elif platform == "web":
|
362 |
print("WEB")
|
363 |
# Handle web case if needed
|
364 |
else:
|
365 |
pass
|
366 |
|
367 |
-
image_data = cv.resize(
|
368 |
normalized_image_array = (image_data.astype(np.float32) / 127.0) - 1
|
|
|
369 |
data[0] = normalized_image_array
|
370 |
-
|
371 |
prediction = model.predict(data)
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
max_label_index = None
|
374 |
max_prediction_value = -1
|
|
|
319 |
import numpy as np
|
320 |
import cv2 as cv
|
321 |
import requests
|
322 |
+
from PIL import Image
|
323 |
import os
|
324 |
import tensorflow as tf
|
325 |
|
|
|
357 |
if platform == "wh":
|
358 |
get_image = requests.get(Image, headers=headers)
|
359 |
if get_image.status_code == 200:
|
360 |
+
# print(get_image.content)
|
361 |
+
# imageData = cv.imdecode(np.asarray(bytearray(get_image.content), dtype="uint8"), cv.IMREAD_COLOR)
|
362 |
+
image_bytes = get_image.content
|
363 |
+
image = Image.open(io.BytesIO(image_bytes))
|
364 |
+
image_data = cv.cvtColor(np.array(image), cv.COLOR_RGB2BGR)
|
365 |
elif platform == "web":
|
366 |
print("WEB")
|
367 |
# Handle web case if needed
|
368 |
else:
|
369 |
pass
|
370 |
|
371 |
+
image_data = cv.resize(image_data, (224, 224))
|
372 |
normalized_image_array = (image_data.astype(np.float32) / 127.0) - 1
|
373 |
+
data = np.zeros((1, 224, 224, 3))
|
374 |
data[0] = normalized_image_array
|
|
|
375 |
prediction = model.predict(data)
|
376 |
+
# image_data = cv.resize(imageData, (224, 224))
|
377 |
+
# normalized_image_array = (image_data.astype(np.float32) / 127.0) - 1
|
378 |
+
# data[0] = normalized_image_array
|
379 |
+
|
380 |
+
# prediction = model.predict(data)
|
381 |
|
382 |
max_label_index = None
|
383 |
max_prediction_value = -1
|