Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -836,9 +836,10 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
836 |
print("Error: Image data is not available.")
|
837 |
return None
|
838 |
|
839 |
-
if
|
840 |
-
|
841 |
-
|
|
|
842 |
|
843 |
image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
|
844 |
image = cv.resize(image, (224, 224))
|
@@ -884,7 +885,10 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
884 |
|
885 |
if max_rounded_prediction > 0.5:
|
886 |
print("\nWays to dispose of this waste: " + max_label)
|
887 |
-
|
|
|
|
|
|
|
888 |
print("IMAGE messages after appending:", messages)
|
889 |
|
890 |
print("Message list of image:", messages)
|
@@ -913,13 +917,18 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
913 |
# reply = response.choices[0].message['content']
|
914 |
print("RESPONSE TRY", completion)
|
915 |
|
916 |
-
|
917 |
-
|
|
|
|
|
918 |
except:
|
919 |
print("DOESN'T WORK")
|
920 |
|
921 |
elif max_rounded_prediction < 0.5:
|
922 |
-
|
|
|
|
|
|
|
923 |
|
924 |
return output
|
925 |
|
|
|
836 |
print("Error: Image data is not available.")
|
837 |
return None
|
838 |
|
839 |
+
if UserInput.lower() is not None:
|
840 |
+
caption = UserInput.lower()
|
841 |
+
else:
|
842 |
+
caption = ""
|
843 |
|
844 |
image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
|
845 |
image = cv.resize(image, (224, 224))
|
|
|
885 |
|
886 |
if max_rounded_prediction > 0.5:
|
887 |
print("\nWays to dispose of this waste: " + max_label)
|
888 |
+
if caption == None:
|
889 |
+
messages.append({"role": "user", "content": content + " " + max_label})
|
890 |
+
else:
|
891 |
+
messages.append({"role": "user", "content": caption})
|
892 |
print("IMAGE messages after appending:", messages)
|
893 |
|
894 |
print("Message list of image:", messages)
|
|
|
917 |
# reply = response.choices[0].message['content']
|
918 |
print("RESPONSE TRY", completion)
|
919 |
|
920 |
+
if caption == None:
|
921 |
+
output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
922 |
+
else:
|
923 |
+
output.append({"Mode": "Image with Caption", "content": reply})
|
924 |
except:
|
925 |
print("DOESN'T WORK")
|
926 |
|
927 |
elif max_rounded_prediction < 0.5:
|
928 |
+
if caption == None:
|
929 |
+
output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
|
930 |
+
else:
|
931 |
+
pass
|
932 |
|
933 |
return output
|
934 |
|