Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -483,7 +483,219 @@
|
|
483 |
# )
|
484 |
# iface.launch()
|
485 |
|
486 |
-
##############
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
487 |
|
488 |
import gradio as gr
|
489 |
import numpy as np
|
@@ -492,6 +704,7 @@ import requests
|
|
492 |
import io
|
493 |
import time
|
494 |
from PIL import Image
|
|
|
495 |
import os
|
496 |
import tensorflow as tf
|
497 |
import random
|
@@ -507,6 +720,8 @@ auth = os.environ.get("auth")
|
|
507 |
auth2 = os.environ.get("auth2")
|
508 |
openai.api_key = os.environ.get("auth")
|
509 |
openai.api_base = os.environ.get("host")
|
|
|
|
|
510 |
data = None
|
511 |
|
512 |
np.set_printoptions(suppress=True)
|
@@ -546,6 +761,49 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
|
546 |
else:
|
547 |
pass
|
548 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
549 |
image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
|
550 |
image = cv.resize(image, (224, 224))
|
551 |
image_array = np.asarray(image)
|
|
|
483 |
# )
|
484 |
# iface.launch()
|
485 |
|
486 |
+
############## WORKING AS OF THIS MONTH ##############
|
487 |
+
|
488 |
+
# import gradio as gr
|
489 |
+
# import numpy as np
|
490 |
+
# import cv2 as cv
|
491 |
+
# import requests
|
492 |
+
# import io
|
493 |
+
# import time
|
494 |
+
# from PIL import Image
|
495 |
+
# import os
|
496 |
+
# import tensorflow as tf
|
497 |
+
# import random
|
498 |
+
# import openai
|
499 |
+
|
500 |
+
# host = os.environ.get("host")
|
501 |
+
# code = os.environ.get("code")
|
502 |
+
# model_llm = os.environ.get("model")
|
503 |
+
# content = os.environ.get("content")
|
504 |
+
# state = os.environ.get("state")
|
505 |
+
# system = os.environ.get("system")
|
506 |
+
# auth = os.environ.get("auth")
|
507 |
+
# auth2 = os.environ.get("auth2")
|
508 |
+
# openai.api_key = os.environ.get("auth")
|
509 |
+
# openai.api_base = os.environ.get("host")
|
510 |
+
# data = None
|
511 |
+
|
512 |
+
# np.set_printoptions(suppress=True)
|
513 |
+
|
514 |
+
# model = tf.keras.models.load_model('keras_model.h5')
|
515 |
+
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
516 |
+
|
517 |
+
# with open("labels.txt", "r") as file:
|
518 |
+
# labels = file.read().splitlines()
|
519 |
+
|
520 |
+
# messages = [
|
521 |
+
# {"role": "system", "content": system}
|
522 |
+
# ]
|
523 |
+
|
524 |
+
# def classify(platform, UserInput, Images, Textbox2, Textbox3):
|
525 |
+
# if UserInput.lower() == "clear history":
|
526 |
+
# messages.clear()
|
527 |
+
# messages.append(
|
528 |
+
# {"role": "system", "content": system}
|
529 |
+
# )
|
530 |
+
|
531 |
+
# if Textbox3 == code:
|
532 |
+
# imageData = None
|
533 |
+
# if Images != "None":
|
534 |
+
# output = []
|
535 |
+
# headers = {
|
536 |
+
# "Authorization": f"Bearer {auth2}"
|
537 |
+
# }
|
538 |
+
# if platform == "wh":
|
539 |
+
# get_image = requests.get(Images, headers=headers)
|
540 |
+
# if get_image.status_code == 200:
|
541 |
+
# image_data = get_image.content
|
542 |
+
# elif platform == "web":
|
543 |
+
# # print("WEB")
|
544 |
+
# url = requests.get(Images)
|
545 |
+
# image_data = url.content
|
546 |
+
# else:
|
547 |
+
# pass
|
548 |
+
|
549 |
+
# image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
|
550 |
+
# image = cv.resize(image, (224, 224))
|
551 |
+
# image_array = np.asarray(image)
|
552 |
+
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
553 |
+
# data[0] = normalized_image_array
|
554 |
+
|
555 |
+
# prediction = model.predict(data)
|
556 |
+
|
557 |
+
# max_label_index = None
|
558 |
+
# max_prediction_value = -1
|
559 |
+
|
560 |
+
# print('Prediction')
|
561 |
+
|
562 |
+
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
563 |
+
# Textbox2 = Textbox2.split(",")
|
564 |
+
# Textbox2_edited = [x.strip() for x in Textbox2]
|
565 |
+
# Textbox2_edited = list(Textbox2_edited)
|
566 |
+
# Textbox2_edited.append(UserInput)
|
567 |
+
# print(UserInput)
|
568 |
+
# print("appending")
|
569 |
+
# # messages.append({"role": "user", "content": UserInput})
|
570 |
+
|
571 |
+
# # Pop earlier messages if there are more than 10
|
572 |
+
# # if UserInput.lower() == "clear history":
|
573 |
+
# # while len(messages) > 10:
|
574 |
+
# # messages.pop(0)
|
575 |
+
|
576 |
+
# for i, label in enumerate(labels):
|
577 |
+
# prediction_value = float(prediction[0][i])
|
578 |
+
# rounded_value = round(prediction_value, 2)
|
579 |
+
# print(f'{label}: {rounded_value}')
|
580 |
+
|
581 |
+
# if prediction_value > max_prediction_value:
|
582 |
+
# max_label_index = i
|
583 |
+
# max_prediction_value = prediction_value
|
584 |
+
|
585 |
+
# if max_label_index is not None:
|
586 |
+
# max_label = labels[max_label_index].split(' ', 1)[1]
|
587 |
+
# max_rounded_prediction = round(max_prediction_value, 2)
|
588 |
+
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
589 |
+
|
590 |
+
# if max_rounded_prediction > 0.5:
|
591 |
+
# print("\nWays to dispose of this waste: " + max_label)
|
592 |
+
# messages.append({"role": "user", "content": content + " " + max_label})
|
593 |
+
# print("IMAGE messages after appending:", messages)
|
594 |
+
|
595 |
+
# print("Message list of image:", messages)
|
596 |
+
|
597 |
+
# header = {
|
598 |
+
# "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
|
599 |
+
# "Content-Type": "application/json",
|
600 |
+
# "Authorization": f"Bearer {auth}"
|
601 |
+
# }
|
602 |
+
|
603 |
+
# try:
|
604 |
+
# # response = requests.post(host, headers=header, json={
|
605 |
+
# # "messages": messages,
|
606 |
+
# # "model": model_llm
|
607 |
+
# # }).json()
|
608 |
+
|
609 |
+
# completion = openai.ChatCompletion.create(
|
610 |
+
# model="gpt-3.5-turbo",
|
611 |
+
# messages=messages
|
612 |
+
# )
|
613 |
+
|
614 |
+
|
615 |
+
# # reply = response["choices"][0]["message"]["content"]
|
616 |
+
# reply = completion.choices[0].message['content']
|
617 |
+
# # # reply = response["choices"][0]["message"]["content"]
|
618 |
+
# # reply = response.choices[0].message['content']
|
619 |
+
# print("RESPONSE TRY", completion)
|
620 |
+
|
621 |
+
|
622 |
+
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
623 |
+
# except:
|
624 |
+
# print("DOESN'T WORK")
|
625 |
+
|
626 |
+
# elif max_rounded_prediction < 0.5:
|
627 |
+
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
|
628 |
+
|
629 |
+
# return output
|
630 |
+
|
631 |
+
# elif Images == "None":
|
632 |
+
# output = []
|
633 |
+
|
634 |
+
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
635 |
+
# Textbox2 = Textbox2.split(",")
|
636 |
+
# Textbox2_edited = [x.strip() for x in Textbox2]
|
637 |
+
# Textbox2_edited = list(Textbox2_edited)
|
638 |
+
# Textbox2_edited.append(UserInput)
|
639 |
+
|
640 |
+
# for i in Textbox2_edited:
|
641 |
+
# messages.append({"role": "user", "content": i})
|
642 |
+
|
643 |
+
# print("messages after appending:", messages)
|
644 |
+
|
645 |
+
# messages.append({"role": "user", "content": UserInput})
|
646 |
+
|
647 |
+
# # Pop earlier messages if there are more than 10
|
648 |
+
# # if UserInput.lower() == "clear history":
|
649 |
+
# # while len(messages) > 10:
|
650 |
+
# # messages.pop(0)
|
651 |
+
|
652 |
+
# headers = {
|
653 |
+
# "Content-Type": "application/json",
|
654 |
+
# "Authorization": f"Bearer {auth}"
|
655 |
+
# }
|
656 |
+
|
657 |
+
# try:
|
658 |
+
# # response = requests.post(host, headers=headers, json={
|
659 |
+
# # "messages": messages,
|
660 |
+
# # "model": model_llm
|
661 |
+
# # }).json()
|
662 |
+
|
663 |
+
# completion = openai.ChatCompletion.create(
|
664 |
+
# model="gpt-3.5-turbo",
|
665 |
+
# messages=messages
|
666 |
+
# )
|
667 |
+
|
668 |
+
|
669 |
+
# # reply = response["choices"][0]["message"]["content"]
|
670 |
+
# reply = completion.choices[0].message['content']
|
671 |
+
# print("RESPONSE TRY (NO IMAGE)", completion, reply)
|
672 |
+
|
673 |
+
# except:
|
674 |
+
# reply = "Maximum messages: 15. Please clear your history and Try Again! (No Image)"
|
675 |
+
# output.append({"Mode": "Chat", "content": reply})
|
676 |
+
|
677 |
+
# return output
|
678 |
+
# else:
|
679 |
+
# return "Unauthorized"
|
680 |
+
|
681 |
+
# user_inputs = [
|
682 |
+
# gr.Textbox(label="Platform", type="text"),
|
683 |
+
# gr.Textbox(label="User Input", type="text"),
|
684 |
+
# gr.Textbox(label="Image", type="text"),
|
685 |
+
# gr.Textbox(label="Textbox2", type="text"),
|
686 |
+
# gr.Textbox(label="Textbox3", type="password")
|
687 |
+
# ]
|
688 |
+
|
689 |
+
# iface = gr.Interface(
|
690 |
+
# fn=classify,
|
691 |
+
# inputs=user_inputs,
|
692 |
+
# outputs=gr.outputs.JSON(),
|
693 |
+
# title="Classifier",
|
694 |
+
# )
|
695 |
+
# iface.launch()
|
696 |
+
|
697 |
+
|
698 |
+
############## NEW VERSION ##############
|
699 |
|
700 |
import gradio as gr
|
701 |
import numpy as np
|
|
|
704 |
import io
|
705 |
import time
|
706 |
from PIL import Image
|
707 |
+
import base64
|
708 |
import os
|
709 |
import tensorflow as tf
|
710 |
import random
|
|
|
720 |
auth2 = os.environ.get("auth2")
|
721 |
openai.api_key = os.environ.get("auth")
|
722 |
openai.api_base = os.environ.get("host")
|
723 |
+
vis_url = os.environ.get("vis_url")
|
724 |
+
vis_auth = os.environ.get("vis_auth")
|
725 |
data = None
|
726 |
|
727 |
np.set_printoptions(suppress=True)
|
|
|
761 |
else:
|
762 |
pass
|
763 |
|
764 |
+
def vision():
|
765 |
+
with open("image.png", "wb") as file1_write:
|
766 |
+
file1_write.write(image_data)
|
767 |
+
|
768 |
+
with open("image.png", "rb") as file1_read:
|
769 |
+
file_content = file1_read.read()
|
770 |
+
|
771 |
+
image = Image.open(io.BytesIO(file_content))
|
772 |
+
|
773 |
+
base64_image_str = encode_image(image)
|
774 |
+
|
775 |
+
payload = {
|
776 |
+
"content": [
|
777 |
+
{
|
778 |
+
"prompt": user,
|
779 |
+
"image": base64_image_str,
|
780 |
+
}
|
781 |
+
],
|
782 |
+
"token": vis_auth,
|
783 |
+
}
|
784 |
+
|
785 |
+
url = vis_url
|
786 |
+
headers = {"Content-Type": "application/json"}
|
787 |
+
|
788 |
+
response = requests.post(url, headers=headers, data=json.dumps(payload))
|
789 |
+
results = response.json()
|
790 |
+
results = results["result"]
|
791 |
+
|
792 |
+
answer_index = results.find("Answer:")
|
793 |
+
|
794 |
+
if answer_index != -1:
|
795 |
+
try:
|
796 |
+
result_text = results[answer_index + len("Answer:"):].strip()
|
797 |
+
print(result_text)
|
798 |
+
return result_text
|
799 |
+
except:
|
800 |
+
pass
|
801 |
+
else:
|
802 |
+
return "Answer: not found in the string."
|
803 |
+
|
804 |
+
if "vision" in UserInput.lower():
|
805 |
+
vision()
|
806 |
+
|
807 |
image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
|
808 |
image = cv.resize(image, (224, 224))
|
809 |
image_array = np.asarray(image)
|