tommy24 commited on
Commit
e3bad66
·
1 Parent(s): a980e9f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +259 -1
app.py CHANGED
@@ -483,7 +483,219 @@
483
  # )
484
  # iface.launch()
485
 
486
- ############## TEST
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487
 
488
  import gradio as gr
489
  import numpy as np
@@ -492,6 +704,7 @@ import requests
492
  import io
493
  import time
494
  from PIL import Image
 
495
  import os
496
  import tensorflow as tf
497
  import random
@@ -507,6 +720,8 @@ auth = os.environ.get("auth")
507
  auth2 = os.environ.get("auth2")
508
  openai.api_key = os.environ.get("auth")
509
  openai.api_base = os.environ.get("host")
 
 
510
  data = None
511
 
512
  np.set_printoptions(suppress=True)
@@ -546,6 +761,49 @@ def classify(platform, UserInput, Images, Textbox2, Textbox3):
546
  else:
547
  pass
548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549
  image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
550
  image = cv.resize(image, (224, 224))
551
  image_array = np.asarray(image)
 
483
  # )
484
  # iface.launch()
485
 
486
+ ############## WORKING AS OF THIS MONTH ##############
487
+
488
+ # import gradio as gr
489
+ # import numpy as np
490
+ # import cv2 as cv
491
+ # import requests
492
+ # import io
493
+ # import time
494
+ # from PIL import Image
495
+ # import os
496
+ # import tensorflow as tf
497
+ # import random
498
+ # import openai
499
+
500
+ # host = os.environ.get("host")
501
+ # code = os.environ.get("code")
502
+ # model_llm = os.environ.get("model")
503
+ # content = os.environ.get("content")
504
+ # state = os.environ.get("state")
505
+ # system = os.environ.get("system")
506
+ # auth = os.environ.get("auth")
507
+ # auth2 = os.environ.get("auth2")
508
+ # openai.api_key = os.environ.get("auth")
509
+ # openai.api_base = os.environ.get("host")
510
+ # data = None
511
+
512
+ # np.set_printoptions(suppress=True)
513
+
514
+ # model = tf.keras.models.load_model('keras_model.h5')
515
+ # data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
516
+
517
+ # with open("labels.txt", "r") as file:
518
+ # labels = file.read().splitlines()
519
+
520
+ # messages = [
521
+ # {"role": "system", "content": system}
522
+ # ]
523
+
524
+ # def classify(platform, UserInput, Images, Textbox2, Textbox3):
525
+ # if UserInput.lower() == "clear history":
526
+ # messages.clear()
527
+ # messages.append(
528
+ # {"role": "system", "content": system}
529
+ # )
530
+
531
+ # if Textbox3 == code:
532
+ # imageData = None
533
+ # if Images != "None":
534
+ # output = []
535
+ # headers = {
536
+ # "Authorization": f"Bearer {auth2}"
537
+ # }
538
+ # if platform == "wh":
539
+ # get_image = requests.get(Images, headers=headers)
540
+ # if get_image.status_code == 200:
541
+ # image_data = get_image.content
542
+ # elif platform == "web":
543
+ # # print("WEB")
544
+ # url = requests.get(Images)
545
+ # image_data = url.content
546
+ # else:
547
+ # pass
548
+
549
+ # image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
550
+ # image = cv.resize(image, (224, 224))
551
+ # image_array = np.asarray(image)
552
+ # normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
553
+ # data[0] = normalized_image_array
554
+
555
+ # prediction = model.predict(data)
556
+
557
+ # max_label_index = None
558
+ # max_prediction_value = -1
559
+
560
+ # print('Prediction')
561
+
562
+ # Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
563
+ # Textbox2 = Textbox2.split(",")
564
+ # Textbox2_edited = [x.strip() for x in Textbox2]
565
+ # Textbox2_edited = list(Textbox2_edited)
566
+ # Textbox2_edited.append(UserInput)
567
+ # print(UserInput)
568
+ # print("appending")
569
+ # # messages.append({"role": "user", "content": UserInput})
570
+
571
+ # # Pop earlier messages if there are more than 10
572
+ # # if UserInput.lower() == "clear history":
573
+ # # while len(messages) > 10:
574
+ # # messages.pop(0)
575
+
576
+ # for i, label in enumerate(labels):
577
+ # prediction_value = float(prediction[0][i])
578
+ # rounded_value = round(prediction_value, 2)
579
+ # print(f'{label}: {rounded_value}')
580
+
581
+ # if prediction_value > max_prediction_value:
582
+ # max_label_index = i
583
+ # max_prediction_value = prediction_value
584
+
585
+ # if max_label_index is not None:
586
+ # max_label = labels[max_label_index].split(' ', 1)[1]
587
+ # max_rounded_prediction = round(max_prediction_value, 2)
588
+ # print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
589
+
590
+ # if max_rounded_prediction > 0.5:
591
+ # print("\nWays to dispose of this waste: " + max_label)
592
+ # messages.append({"role": "user", "content": content + " " + max_label})
593
+ # print("IMAGE messages after appending:", messages)
594
+
595
+ # print("Message list of image:", messages)
596
+
597
+ # header = {
598
+ # "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36",
599
+ # "Content-Type": "application/json",
600
+ # "Authorization": f"Bearer {auth}"
601
+ # }
602
+
603
+ # try:
604
+ # # response = requests.post(host, headers=header, json={
605
+ # # "messages": messages,
606
+ # # "model": model_llm
607
+ # # }).json()
608
+
609
+ # completion = openai.ChatCompletion.create(
610
+ # model="gpt-3.5-turbo",
611
+ # messages=messages
612
+ # )
613
+
614
+
615
+ # # reply = response["choices"][0]["message"]["content"]
616
+ # reply = completion.choices[0].message['content']
617
+ # # # reply = response["choices"][0]["message"]["content"]
618
+ # # reply = response.choices[0].message['content']
619
+ # print("RESPONSE TRY", completion)
620
+
621
+
622
+ # output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
623
+ # except:
624
+ # print("DOESN'T WORK")
625
+
626
+ # elif max_rounded_prediction < 0.5:
627
+ # output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
628
+
629
+ # return output
630
+
631
+ # elif Images == "None":
632
+ # output = []
633
+
634
+ # Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
635
+ # Textbox2 = Textbox2.split(",")
636
+ # Textbox2_edited = [x.strip() for x in Textbox2]
637
+ # Textbox2_edited = list(Textbox2_edited)
638
+ # Textbox2_edited.append(UserInput)
639
+
640
+ # for i in Textbox2_edited:
641
+ # messages.append({"role": "user", "content": i})
642
+
643
+ # print("messages after appending:", messages)
644
+
645
+ # messages.append({"role": "user", "content": UserInput})
646
+
647
+ # # Pop earlier messages if there are more than 10
648
+ # # if UserInput.lower() == "clear history":
649
+ # # while len(messages) > 10:
650
+ # # messages.pop(0)
651
+
652
+ # headers = {
653
+ # "Content-Type": "application/json",
654
+ # "Authorization": f"Bearer {auth}"
655
+ # }
656
+
657
+ # try:
658
+ # # response = requests.post(host, headers=headers, json={
659
+ # # "messages": messages,
660
+ # # "model": model_llm
661
+ # # }).json()
662
+
663
+ # completion = openai.ChatCompletion.create(
664
+ # model="gpt-3.5-turbo",
665
+ # messages=messages
666
+ # )
667
+
668
+
669
+ # # reply = response["choices"][0]["message"]["content"]
670
+ # reply = completion.choices[0].message['content']
671
+ # print("RESPONSE TRY (NO IMAGE)", completion, reply)
672
+
673
+ # except:
674
+ # reply = "Maximum messages: 15. Please clear your history and Try Again! (No Image)"
675
+ # output.append({"Mode": "Chat", "content": reply})
676
+
677
+ # return output
678
+ # else:
679
+ # return "Unauthorized"
680
+
681
+ # user_inputs = [
682
+ # gr.Textbox(label="Platform", type="text"),
683
+ # gr.Textbox(label="User Input", type="text"),
684
+ # gr.Textbox(label="Image", type="text"),
685
+ # gr.Textbox(label="Textbox2", type="text"),
686
+ # gr.Textbox(label="Textbox3", type="password")
687
+ # ]
688
+
689
+ # iface = gr.Interface(
690
+ # fn=classify,
691
+ # inputs=user_inputs,
692
+ # outputs=gr.outputs.JSON(),
693
+ # title="Classifier",
694
+ # )
695
+ # iface.launch()
696
+
697
+
698
+ ############## NEW VERSION ##############
699
 
700
  import gradio as gr
701
  import numpy as np
 
704
  import io
705
  import time
706
  from PIL import Image
707
+ import base64
708
  import os
709
  import tensorflow as tf
710
  import random
 
720
  auth2 = os.environ.get("auth2")
721
  openai.api_key = os.environ.get("auth")
722
  openai.api_base = os.environ.get("host")
723
+ vis_url = os.environ.get("vis_url")
724
+ vis_auth = os.environ.get("vis_auth")
725
  data = None
726
 
727
  np.set_printoptions(suppress=True)
 
761
  else:
762
  pass
763
 
764
+ def vision():
765
+ with open("image.png", "wb") as file1_write:
766
+ file1_write.write(image_data)
767
+
768
+ with open("image.png", "rb") as file1_read:
769
+ file_content = file1_read.read()
770
+
771
+ image = Image.open(io.BytesIO(file_content))
772
+
773
+ base64_image_str = encode_image(image)
774
+
775
+ payload = {
776
+ "content": [
777
+ {
778
+ "prompt": user,
779
+ "image": base64_image_str,
780
+ }
781
+ ],
782
+ "token": vis_auth,
783
+ }
784
+
785
+ url = vis_url
786
+ headers = {"Content-Type": "application/json"}
787
+
788
+ response = requests.post(url, headers=headers, data=json.dumps(payload))
789
+ results = response.json()
790
+ results = results["result"]
791
+
792
+ answer_index = results.find("Answer:")
793
+
794
+ if answer_index != -1:
795
+ try:
796
+ result_text = results[answer_index + len("Answer:"):].strip()
797
+ print(result_text)
798
+ return result_text
799
+ except:
800
+ pass
801
+ else:
802
+ return "Answer: not found in the string."
803
+
804
+ if "vision" in UserInput.lower():
805
+ vision()
806
+
807
  image = cv.imdecode(np.frombuffer(image_data, np.uint8), cv.IMREAD_COLOR)
808
  image = cv.resize(image, (224, 224))
809
  image_array = np.asarray(image)