Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import cv2 as cv
|
@@ -26,7 +183,7 @@ data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
|
26 |
with open("labels.txt", "r") as file:
|
27 |
labels = file.read().splitlines()
|
28 |
|
29 |
-
def classify(
|
30 |
if Textbox3 == code:
|
31 |
if Image is not None:
|
32 |
output = []
|
@@ -50,17 +207,11 @@ def classify(Textbox, Image, Textbox2, Textbox3):
|
|
50 |
Textbox2 = Textbox2.split(",")
|
51 |
Textbox2_edited = [x.strip() for x in Textbox2]
|
52 |
Textbox2_edited = list(Textbox2_edited)
|
53 |
-
Textbox2_edited.append(
|
54 |
messages = [
|
55 |
{"role": "system", "content": system},
|
|
|
56 |
]
|
57 |
-
print("Messages",messages)
|
58 |
-
|
59 |
-
# for i in Textbox2_edited:
|
60 |
-
# messages.append(
|
61 |
-
# {"role": "user", "content": i}
|
62 |
-
# )
|
63 |
-
print("messages after appending:", messages)
|
64 |
|
65 |
for i, label in enumerate(labels):
|
66 |
prediction_value = float(prediction[0][i])
|
@@ -74,10 +225,9 @@ def classify(Textbox, Image, Textbox2, Textbox3):
|
|
74 |
if max_label_index is not None:
|
75 |
max_label = labels[max_label_index].split(' ', 1)[1]
|
76 |
print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
|
77 |
-
|
78 |
time.sleep(1)
|
79 |
print("\nWays to dispose of this waste: " + max_label)
|
80 |
-
messages.append({"role": "user", "content": Textbox})
|
81 |
messages.append({"role": "user", "content": content + " " + max_label})
|
82 |
|
83 |
headers = {
|
@@ -86,14 +236,14 @@ def classify(Textbox, Image, Textbox2, Textbox3):
|
|
86 |
}
|
87 |
|
88 |
response = requests.post(host, headers=headers, json={
|
89 |
-
"messages":messages,
|
90 |
-
"model":model_llm
|
91 |
}).json()
|
92 |
|
93 |
reply = response["choices"][0]["message"]["content"]
|
94 |
messages.append({"role": "assistant", "content": reply})
|
95 |
|
96 |
-
output.append({"Mode":"Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
|
97 |
|
98 |
return output
|
99 |
|
@@ -104,20 +254,18 @@ def classify(Textbox, Image, Textbox2, Textbox3):
|
|
104 |
Textbox2 = Textbox2.split(",")
|
105 |
Textbox2_edited = [x.strip() for x in Textbox2]
|
106 |
Textbox2_edited = list(Textbox2_edited)
|
107 |
-
Textbox2_edited.append(
|
108 |
messages = [
|
109 |
{"role": "system", "content": system},
|
110 |
]
|
111 |
-
|
112 |
-
|
113 |
for i in Textbox2_edited:
|
114 |
messages.append(
|
115 |
{"role": "user", "content": i}
|
116 |
)
|
117 |
-
print("messages after appending:", messages)
|
118 |
|
119 |
time.sleep(1)
|
120 |
-
messages.append({"role": "user", "content":
|
121 |
|
122 |
headers = {
|
123 |
"Content-Type": "application/json",
|
@@ -125,20 +273,20 @@ def classify(Textbox, Image, Textbox2, Textbox3):
|
|
125 |
}
|
126 |
|
127 |
response = requests.post(host, headers=headers, json={
|
128 |
-
"messages":messages,
|
129 |
-
"model":model_llm
|
130 |
}).json()
|
131 |
|
132 |
reply = response["choices"][0]["message"]["content"]
|
133 |
messages.append({"role": "assistant", "content": reply})
|
134 |
|
135 |
-
output.append({"Mode":"Chat","content": reply})
|
136 |
|
137 |
return output
|
138 |
|
139 |
else:
|
140 |
return "Unauthorized"
|
141 |
-
|
142 |
user_inputs = [
|
143 |
gr.Textbox(label="User Input", type="text"),
|
144 |
gr.Image(),
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import numpy as np
|
3 |
+
# import cv2 as cv
|
4 |
+
# import requests
|
5 |
+
# import time
|
6 |
+
# import os
|
7 |
+
|
8 |
+
# host = os.environ.get("host")
|
9 |
+
# code = os.environ.get("code")
|
10 |
+
# model_llm = os.environ.get("model")
|
11 |
+
# content = os.environ.get("content")
|
12 |
+
# state = os.environ.get("state")
|
13 |
+
# system = os.environ.get("system")
|
14 |
+
# auth = os.environ.get("auth")
|
15 |
+
# data = None
|
16 |
+
# model = None
|
17 |
+
# image = None
|
18 |
+
# prediction = None
|
19 |
+
# labels = None
|
20 |
+
|
21 |
+
# print('START')
|
22 |
+
# np.set_printoptions(suppress=True)
|
23 |
+
|
24 |
+
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
25 |
+
|
26 |
+
# with open("labels.txt", "r") as file:
|
27 |
+
# labels = file.read().splitlines()
|
28 |
+
|
29 |
+
# def classify(Textbox, Image, Textbox2, Textbox3):
|
30 |
+
# if Textbox3 == code:
|
31 |
+
# if Image is not None:
|
32 |
+
# output = []
|
33 |
+
# image_data = np.array(Image)
|
34 |
+
# image_data = cv.resize(image_data, (224, 224))
|
35 |
+
# image_array = np.asarray(image_data)
|
36 |
+
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
37 |
+
# data[0] = normalized_image_array
|
38 |
+
|
39 |
+
# import tensorflow as tf
|
40 |
+
# model = tf.keras.models.load_model('keras_model.h5')
|
41 |
+
|
42 |
+
# prediction = model.predict(data)
|
43 |
+
|
44 |
+
# max_label_index = None
|
45 |
+
# max_prediction_value = -1
|
46 |
+
|
47 |
+
# print('Prediction')
|
48 |
+
|
49 |
+
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
50 |
+
# Textbox2 = Textbox2.split(",")
|
51 |
+
# Textbox2_edited = [x.strip() for x in Textbox2]
|
52 |
+
# Textbox2_edited = list(Textbox2_edited)
|
53 |
+
# Textbox2_edited.append(Textbox)
|
54 |
+
# messages = [
|
55 |
+
# {"role": "system", "content": system},
|
56 |
+
# ]
|
57 |
+
# print("Messages",messages)
|
58 |
+
|
59 |
+
# # for i in Textbox2_edited:
|
60 |
+
# # messages.append(
|
61 |
+
# # {"role": "user", "content": i}
|
62 |
+
# # )
|
63 |
+
# print("messages after appending:", messages)
|
64 |
+
|
65 |
+
# for i, label in enumerate(labels):
|
66 |
+
# prediction_value = float(prediction[0][i])
|
67 |
+
# rounded_value = round(prediction_value, 2)
|
68 |
+
# print(f'{label}: {rounded_value}')
|
69 |
+
|
70 |
+
# if prediction_value > max_prediction_value:
|
71 |
+
# max_label_index = i
|
72 |
+
# max_prediction_value = prediction_value
|
73 |
+
|
74 |
+
# if max_label_index is not None:
|
75 |
+
# max_label = labels[max_label_index].split(' ', 1)[1]
|
76 |
+
# print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
|
77 |
+
|
78 |
+
# time.sleep(1)
|
79 |
+
# print("\nWays to dispose of this waste: " + max_label)
|
80 |
+
# messages.append({"role": "user", "content": Textbox})
|
81 |
+
# messages.append({"role": "user", "content": content + " " + max_label})
|
82 |
+
|
83 |
+
# headers = {
|
84 |
+
# "Content-Type": "application/json",
|
85 |
+
# "Authorization": f"Bearer {auth}"
|
86 |
+
# }
|
87 |
+
|
88 |
+
# response = requests.post(host, headers=headers, json={
|
89 |
+
# "messages":messages,
|
90 |
+
# "model":model_llm
|
91 |
+
# }).json()
|
92 |
+
|
93 |
+
# reply = response["choices"][0]["message"]["content"]
|
94 |
+
# messages.append({"role": "assistant", "content": reply})
|
95 |
+
|
96 |
+
# output.append({"Mode":"Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
|
97 |
+
|
98 |
+
# return output
|
99 |
+
|
100 |
+
# else:
|
101 |
+
# output = []
|
102 |
+
|
103 |
+
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
104 |
+
# Textbox2 = Textbox2.split(",")
|
105 |
+
# Textbox2_edited = [x.strip() for x in Textbox2]
|
106 |
+
# Textbox2_edited = list(Textbox2_edited)
|
107 |
+
# Textbox2_edited.append(Textbox)
|
108 |
+
# messages = [
|
109 |
+
# {"role": "system", "content": system},
|
110 |
+
# ]
|
111 |
+
# print("Messages",messages)
|
112 |
+
|
113 |
+
# for i in Textbox2_edited:
|
114 |
+
# messages.append(
|
115 |
+
# {"role": "user", "content": i}
|
116 |
+
# )
|
117 |
+
# print("messages after appending:", messages)
|
118 |
+
|
119 |
+
# time.sleep(1)
|
120 |
+
# messages.append({"role": "user", "content": Textbox})
|
121 |
+
|
122 |
+
# headers = {
|
123 |
+
# "Content-Type": "application/json",
|
124 |
+
# "Authorization": f"Bearer {auth}"
|
125 |
+
# }
|
126 |
+
|
127 |
+
# response = requests.post(host, headers=headers, json={
|
128 |
+
# "messages":messages,
|
129 |
+
# "model":model_llm
|
130 |
+
# }).json()
|
131 |
+
|
132 |
+
# reply = response["choices"][0]["message"]["content"]
|
133 |
+
# messages.append({"role": "assistant", "content": reply})
|
134 |
+
|
135 |
+
# output.append({"Mode":"Chat","content": reply})
|
136 |
+
|
137 |
+
# return output
|
138 |
+
|
139 |
+
# else:
|
140 |
+
# return "Unauthorized"
|
141 |
+
|
142 |
+
# user_inputs = [
|
143 |
+
# gr.Textbox(label="User Input", type="text"),
|
144 |
+
# gr.Image(),
|
145 |
+
# gr.Textbox(label="Textbox2", type="text"),
|
146 |
+
# gr.Textbox(label="Textbox3", type="password")
|
147 |
+
# ]
|
148 |
+
|
149 |
+
# iface = gr.Interface(
|
150 |
+
# fn=classify,
|
151 |
+
# inputs=user_inputs,
|
152 |
+
# outputs=gr.outputs.JSON(),
|
153 |
+
# title="Classifier",
|
154 |
+
# )
|
155 |
+
# iface.launch()
|
156 |
+
|
157 |
+
|
158 |
import gradio as gr
|
159 |
import numpy as np
|
160 |
import cv2 as cv
|
|
|
183 |
with open("labels.txt", "r") as file:
|
184 |
labels = file.read().splitlines()
|
185 |
|
186 |
+
def classify(UserInput, Image, Textbox2, Textbox3):
|
187 |
if Textbox3 == code:
|
188 |
if Image is not None:
|
189 |
output = []
|
|
|
207 |
Textbox2 = Textbox2.split(",")
|
208 |
Textbox2_edited = [x.strip() for x in Textbox2]
|
209 |
Textbox2_edited = list(Textbox2_edited)
|
210 |
+
Textbox2_edited.append(UserInput)
|
211 |
messages = [
|
212 |
{"role": "system", "content": system},
|
213 |
+
{"role": "user", "content": UserInput},
|
214 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
for i, label in enumerate(labels):
|
217 |
prediction_value = float(prediction[0][i])
|
|
|
225 |
if max_label_index is not None:
|
226 |
max_label = labels[max_label_index].split(' ', 1)[1]
|
227 |
print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
|
228 |
+
|
229 |
time.sleep(1)
|
230 |
print("\nWays to dispose of this waste: " + max_label)
|
|
|
231 |
messages.append({"role": "user", "content": content + " " + max_label})
|
232 |
|
233 |
headers = {
|
|
|
236 |
}
|
237 |
|
238 |
response = requests.post(host, headers=headers, json={
|
239 |
+
"messages": messages,
|
240 |
+
"model": model_llm
|
241 |
}).json()
|
242 |
|
243 |
reply = response["choices"][0]["message"]["content"]
|
244 |
messages.append({"role": "assistant", "content": reply})
|
245 |
|
246 |
+
output.append({"Mode": "Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
|
247 |
|
248 |
return output
|
249 |
|
|
|
254 |
Textbox2 = Textbox2.split(",")
|
255 |
Textbox2_edited = [x.strip() for x in Textbox2]
|
256 |
Textbox2_edited = list(Textbox2_edited)
|
257 |
+
Textbox2_edited.append(UserInput)
|
258 |
messages = [
|
259 |
{"role": "system", "content": system},
|
260 |
]
|
261 |
+
|
|
|
262 |
for i in Textbox2_edited:
|
263 |
messages.append(
|
264 |
{"role": "user", "content": i}
|
265 |
)
|
|
|
266 |
|
267 |
time.sleep(1)
|
268 |
+
messages.append({"role": "user", "content": UserInput})
|
269 |
|
270 |
headers = {
|
271 |
"Content-Type": "application/json",
|
|
|
273 |
}
|
274 |
|
275 |
response = requests.post(host, headers=headers, json={
|
276 |
+
"messages": messages,
|
277 |
+
"model": model_llm
|
278 |
}).json()
|
279 |
|
280 |
reply = response["choices"][0]["message"]["content"]
|
281 |
messages.append({"role": "assistant", "content": reply})
|
282 |
|
283 |
+
output.append({"Mode": "Chat", "content": reply})
|
284 |
|
285 |
return output
|
286 |
|
287 |
else:
|
288 |
return "Unauthorized"
|
289 |
+
|
290 |
user_inputs = [
|
291 |
gr.Textbox(label="User Input", type="text"),
|
292 |
gr.Image(),
|