tommy24 commited on
Commit
e46c16c
·
1 Parent(s): 55f8653

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +171 -23
app.py CHANGED
@@ -1,3 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import cv2 as cv
@@ -26,7 +183,7 @@ data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
26
  with open("labels.txt", "r") as file:
27
  labels = file.read().splitlines()
28
 
29
- def classify(Textbox, Image, Textbox2, Textbox3):
30
  if Textbox3 == code:
31
  if Image is not None:
32
  output = []
@@ -50,17 +207,11 @@ def classify(Textbox, Image, Textbox2, Textbox3):
50
  Textbox2 = Textbox2.split(",")
51
  Textbox2_edited = [x.strip() for x in Textbox2]
52
  Textbox2_edited = list(Textbox2_edited)
53
- Textbox2_edited.append(Textbox)
54
  messages = [
55
  {"role": "system", "content": system},
 
56
  ]
57
- print("Messages",messages)
58
-
59
- # for i in Textbox2_edited:
60
- # messages.append(
61
- # {"role": "user", "content": i}
62
- # )
63
- print("messages after appending:", messages)
64
 
65
  for i, label in enumerate(labels):
66
  prediction_value = float(prediction[0][i])
@@ -74,10 +225,9 @@ def classify(Textbox, Image, Textbox2, Textbox3):
74
  if max_label_index is not None:
75
  max_label = labels[max_label_index].split(' ', 1)[1]
76
  print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
77
-
78
  time.sleep(1)
79
  print("\nWays to dispose of this waste: " + max_label)
80
- messages.append({"role": "user", "content": Textbox})
81
  messages.append({"role": "user", "content": content + " " + max_label})
82
 
83
  headers = {
@@ -86,14 +236,14 @@ def classify(Textbox, Image, Textbox2, Textbox3):
86
  }
87
 
88
  response = requests.post(host, headers=headers, json={
89
- "messages":messages,
90
- "model":model_llm
91
  }).json()
92
 
93
  reply = response["choices"][0]["message"]["content"]
94
  messages.append({"role": "assistant", "content": reply})
95
 
96
- output.append({"Mode":"Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
97
 
98
  return output
99
 
@@ -104,20 +254,18 @@ def classify(Textbox, Image, Textbox2, Textbox3):
104
  Textbox2 = Textbox2.split(",")
105
  Textbox2_edited = [x.strip() for x in Textbox2]
106
  Textbox2_edited = list(Textbox2_edited)
107
- Textbox2_edited.append(Textbox)
108
  messages = [
109
  {"role": "system", "content": system},
110
  ]
111
- print("Messages",messages)
112
-
113
  for i in Textbox2_edited:
114
  messages.append(
115
  {"role": "user", "content": i}
116
  )
117
- print("messages after appending:", messages)
118
 
119
  time.sleep(1)
120
- messages.append({"role": "user", "content": Textbox})
121
 
122
  headers = {
123
  "Content-Type": "application/json",
@@ -125,20 +273,20 @@ def classify(Textbox, Image, Textbox2, Textbox3):
125
  }
126
 
127
  response = requests.post(host, headers=headers, json={
128
- "messages":messages,
129
- "model":model_llm
130
  }).json()
131
 
132
  reply = response["choices"][0]["message"]["content"]
133
  messages.append({"role": "assistant", "content": reply})
134
 
135
- output.append({"Mode":"Chat","content": reply})
136
 
137
  return output
138
 
139
  else:
140
  return "Unauthorized"
141
-
142
  user_inputs = [
143
  gr.Textbox(label="User Input", type="text"),
144
  gr.Image(),
 
1
+ # import gradio as gr
2
+ # import numpy as np
3
+ # import cv2 as cv
4
+ # import requests
5
+ # import time
6
+ # import os
7
+
8
+ # host = os.environ.get("host")
9
+ # code = os.environ.get("code")
10
+ # model_llm = os.environ.get("model")
11
+ # content = os.environ.get("content")
12
+ # state = os.environ.get("state")
13
+ # system = os.environ.get("system")
14
+ # auth = os.environ.get("auth")
15
+ # data = None
16
+ # model = None
17
+ # image = None
18
+ # prediction = None
19
+ # labels = None
20
+
21
+ # print('START')
22
+ # np.set_printoptions(suppress=True)
23
+
24
+ # data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
25
+
26
+ # with open("labels.txt", "r") as file:
27
+ # labels = file.read().splitlines()
28
+
29
+ # def classify(Textbox, Image, Textbox2, Textbox3):
30
+ # if Textbox3 == code:
31
+ # if Image is not None:
32
+ # output = []
33
+ # image_data = np.array(Image)
34
+ # image_data = cv.resize(image_data, (224, 224))
35
+ # image_array = np.asarray(image_data)
36
+ # normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
37
+ # data[0] = normalized_image_array
38
+
39
+ # import tensorflow as tf
40
+ # model = tf.keras.models.load_model('keras_model.h5')
41
+
42
+ # prediction = model.predict(data)
43
+
44
+ # max_label_index = None
45
+ # max_prediction_value = -1
46
+
47
+ # print('Prediction')
48
+
49
+ # Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
50
+ # Textbox2 = Textbox2.split(",")
51
+ # Textbox2_edited = [x.strip() for x in Textbox2]
52
+ # Textbox2_edited = list(Textbox2_edited)
53
+ # Textbox2_edited.append(Textbox)
54
+ # messages = [
55
+ # {"role": "system", "content": system},
56
+ # ]
57
+ # print("Messages",messages)
58
+
59
+ # # for i in Textbox2_edited:
60
+ # # messages.append(
61
+ # # {"role": "user", "content": i}
62
+ # # )
63
+ # print("messages after appending:", messages)
64
+
65
+ # for i, label in enumerate(labels):
66
+ # prediction_value = float(prediction[0][i])
67
+ # rounded_value = round(prediction_value, 2)
68
+ # print(f'{label}: {rounded_value}')
69
+
70
+ # if prediction_value > max_prediction_value:
71
+ # max_label_index = i
72
+ # max_prediction_value = prediction_value
73
+
74
+ # if max_label_index is not None:
75
+ # max_label = labels[max_label_index].split(' ', 1)[1]
76
+ # print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
77
+
78
+ # time.sleep(1)
79
+ # print("\nWays to dispose of this waste: " + max_label)
80
+ # messages.append({"role": "user", "content": Textbox})
81
+ # messages.append({"role": "user", "content": content + " " + max_label})
82
+
83
+ # headers = {
84
+ # "Content-Type": "application/json",
85
+ # "Authorization": f"Bearer {auth}"
86
+ # }
87
+
88
+ # response = requests.post(host, headers=headers, json={
89
+ # "messages":messages,
90
+ # "model":model_llm
91
+ # }).json()
92
+
93
+ # reply = response["choices"][0]["message"]["content"]
94
+ # messages.append({"role": "assistant", "content": reply})
95
+
96
+ # output.append({"Mode":"Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
97
+
98
+ # return output
99
+
100
+ # else:
101
+ # output = []
102
+
103
+ # Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
104
+ # Textbox2 = Textbox2.split(",")
105
+ # Textbox2_edited = [x.strip() for x in Textbox2]
106
+ # Textbox2_edited = list(Textbox2_edited)
107
+ # Textbox2_edited.append(Textbox)
108
+ # messages = [
109
+ # {"role": "system", "content": system},
110
+ # ]
111
+ # print("Messages",messages)
112
+
113
+ # for i in Textbox2_edited:
114
+ # messages.append(
115
+ # {"role": "user", "content": i}
116
+ # )
117
+ # print("messages after appending:", messages)
118
+
119
+ # time.sleep(1)
120
+ # messages.append({"role": "user", "content": Textbox})
121
+
122
+ # headers = {
123
+ # "Content-Type": "application/json",
124
+ # "Authorization": f"Bearer {auth}"
125
+ # }
126
+
127
+ # response = requests.post(host, headers=headers, json={
128
+ # "messages":messages,
129
+ # "model":model_llm
130
+ # }).json()
131
+
132
+ # reply = response["choices"][0]["message"]["content"]
133
+ # messages.append({"role": "assistant", "content": reply})
134
+
135
+ # output.append({"Mode":"Chat","content": reply})
136
+
137
+ # return output
138
+
139
+ # else:
140
+ # return "Unauthorized"
141
+
142
+ # user_inputs = [
143
+ # gr.Textbox(label="User Input", type="text"),
144
+ # gr.Image(),
145
+ # gr.Textbox(label="Textbox2", type="text"),
146
+ # gr.Textbox(label="Textbox3", type="password")
147
+ # ]
148
+
149
+ # iface = gr.Interface(
150
+ # fn=classify,
151
+ # inputs=user_inputs,
152
+ # outputs=gr.outputs.JSON(),
153
+ # title="Classifier",
154
+ # )
155
+ # iface.launch()
156
+
157
+
158
  import gradio as gr
159
  import numpy as np
160
  import cv2 as cv
 
183
  with open("labels.txt", "r") as file:
184
  labels = file.read().splitlines()
185
 
186
+ def classify(UserInput, Image, Textbox2, Textbox3):
187
  if Textbox3 == code:
188
  if Image is not None:
189
  output = []
 
207
  Textbox2 = Textbox2.split(",")
208
  Textbox2_edited = [x.strip() for x in Textbox2]
209
  Textbox2_edited = list(Textbox2_edited)
210
+ Textbox2_edited.append(UserInput)
211
  messages = [
212
  {"role": "system", "content": system},
213
+ {"role": "user", "content": UserInput},
214
  ]
 
 
 
 
 
 
 
215
 
216
  for i, label in enumerate(labels):
217
  prediction_value = float(prediction[0][i])
 
225
  if max_label_index is not None:
226
  max_label = labels[max_label_index].split(' ', 1)[1]
227
  print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
228
+
229
  time.sleep(1)
230
  print("\nWays to dispose of this waste: " + max_label)
 
231
  messages.append({"role": "user", "content": content + " " + max_label})
232
 
233
  headers = {
 
236
  }
237
 
238
  response = requests.post(host, headers=headers, json={
239
+ "messages": messages,
240
+ "model": model_llm
241
  }).json()
242
 
243
  reply = response["choices"][0]["message"]["content"]
244
  messages.append({"role": "assistant", "content": reply})
245
 
246
+ output.append({"Mode": "Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
247
 
248
  return output
249
 
 
254
  Textbox2 = Textbox2.split(",")
255
  Textbox2_edited = [x.strip() for x in Textbox2]
256
  Textbox2_edited = list(Textbox2_edited)
257
+ Textbox2_edited.append(UserInput)
258
  messages = [
259
  {"role": "system", "content": system},
260
  ]
261
+
 
262
  for i in Textbox2_edited:
263
  messages.append(
264
  {"role": "user", "content": i}
265
  )
 
266
 
267
  time.sleep(1)
268
+ messages.append({"role": "user", "content": UserInput})
269
 
270
  headers = {
271
  "Content-Type": "application/json",
 
273
  }
274
 
275
  response = requests.post(host, headers=headers, json={
276
+ "messages": messages,
277
+ "model": model_llm
278
  }).json()
279
 
280
  reply = response["choices"][0]["message"]["content"]
281
  messages.append({"role": "assistant", "content": reply})
282
 
283
+ output.append({"Mode": "Chat", "content": reply})
284
 
285
  return output
286
 
287
  else:
288
  return "Unauthorized"
289
+
290
  user_inputs = [
291
  gr.Textbox(label="User Input", type="text"),
292
  gr.Image(),