tommy24 commited on
Commit
fd219e6
·
1 Parent(s): 49e53ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +196 -44
app.py CHANGED
@@ -151,12 +151,176 @@
151
  # iface.launch()
152
 
153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154
  import gradio as gr
155
  import numpy as np
156
  import cv2 as cv
157
  import requests
158
- import time
159
  import os
 
160
 
161
  host = os.environ.get("host")
162
  code = os.environ.get("code")
@@ -166,17 +330,13 @@ state = os.environ.get("state")
166
  system = os.environ.get("system")
167
  auth = os.environ.get("auth")
168
  auth2 = os.environ.get("auth2")
169
- data = None
170
- model = None
171
- image = None
172
- prediction = None
173
- labels = None
174
 
175
- print('START')
176
  np.set_printoptions(suppress=True)
177
 
178
- data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
 
179
 
 
180
  with open("labels.txt", "r") as file:
181
  labels = file.read().splitlines()
182
 
@@ -184,7 +344,7 @@ messages = [
184
  {"role": "system", "content": system}
185
  ]
186
 
187
- def classify(platform,UserInput, Image, Textbox2, Textbox3):
188
  if Textbox3 == code:
189
  if Image is not None:
190
  output = []
@@ -193,108 +353,100 @@ def classify(platform,UserInput, Image, Textbox2, Textbox3):
193
  }
194
  if platform == "wh":
195
  get_image = requests.get(Image, headers=headers)
196
- print(get_image.content)
197
  elif platform == "web":
198
  print("WEB")
 
199
  else:
200
  pass
201
- image_data = np.array(Image)
202
  image_data = cv.resize(image_data, (224, 224))
203
- image_array = np.asarray(image_data)
204
- normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
205
  data[0] = normalized_image_array
206
-
207
- import tensorflow as tf
208
- model = tf.keras.models.load_model('keras_model.h5')
209
-
210
  prediction = model.predict(data)
211
-
212
  max_label_index = None
213
  max_prediction_value = -1
214
-
215
  print('Prediction')
216
-
217
  Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
218
  Textbox2 = Textbox2.split(",")
219
  Textbox2_edited = [x.strip() for x in Textbox2]
220
  Textbox2_edited = list(Textbox2_edited)
221
  Textbox2_edited.append(UserInput)
222
  messages.append({"role": "user", "content": UserInput})
223
-
224
  for i, label in enumerate(labels):
225
  prediction_value = float(prediction[0][i])
226
  rounded_value = round(prediction_value, 2)
227
  print(f'{label}: {rounded_value}')
228
-
229
  if prediction_value > max_prediction_value:
230
  max_label_index = i
231
- max_prediction_value = prediction_value
232
-
233
  if max_label_index is not None:
234
  max_label = labels[max_label_index].split(' ', 1)[1]
235
  max_rounded_prediction = round(max_prediction_value, 2)
236
  print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
237
-
238
- time.sleep(1)
239
  if max_rounded_prediction > 0.5:
240
  print("\nWays to dispose of this waste: " + max_label)
241
  messages.append({"role": "user", "content": content + " " + max_label})
242
-
243
  headers = {
244
  "Content-Type": "application/json",
245
  "Authorization": f"Bearer {auth}"
246
  }
247
-
248
  response = requests.post(host, headers=headers, json={
249
  "messages": messages,
250
  "model": model_llm
251
  }).json()
252
-
253
  reply = response["choices"][0]["message"]["content"]
254
  messages.append({"role": "assistant", "content": reply})
255
-
256
  output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
257
  elif max_rounded_prediction < 0.5:
258
- output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
259
-
260
  return output
261
 
262
  else:
263
  output = []
264
-
265
  Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
266
  Textbox2 = Textbox2.split(",")
267
  Textbox2_edited = [x.strip() for x in Textbox2]
268
  Textbox2_edited = list(Textbox2_edited)
269
  Textbox2_edited.append(UserInput)
270
-
271
  for i in Textbox2_edited:
272
- messages.append(
273
- {"role": "user", "content": i}
274
- )
275
-
276
  print("messages after appending:", messages)
277
-
278
- time.sleep(1)
279
  messages.append({"role": "user", "content": UserInput})
280
 
281
  headers = {
282
  "Content-Type": "application/json",
283
  "Authorization": f"Bearer {auth}"
284
  }
285
-
286
  response = requests.post(host, headers=headers, json={
287
  "messages": messages,
288
  "model": model_llm
289
  }).json()
290
-
291
  reply = response["choices"][0]["message"]["content"]
292
  messages.append({"role": "assistant", "content": reply})
293
 
294
  output.append({"Mode": "Chat", "content": reply})
295
-
296
- return output
297
 
 
298
  else:
299
  return "Unauthorized"
300
 
 
151
  # iface.launch()
152
 
153
 
154
+ # import gradio as gr
155
+ # import numpy as np
156
+ # import cv2 as cv
157
+ # import requests
158
+ # import time
159
+ # import os
160
+
161
+ # host = os.environ.get("host")
162
+ # code = os.environ.get("code")
163
+ # model_llm = os.environ.get("model")
164
+ # content = os.environ.get("content")
165
+ # state = os.environ.get("state")
166
+ # system = os.environ.get("system")
167
+ # auth = os.environ.get("auth")
168
+ # auth2 = os.environ.get("auth2")
169
+ # data = None
170
+ # model = None
171
+ # image = None
172
+ # prediction = None
173
+ # labels = None
174
+
175
+ # print('START')
176
+ # np.set_printoptions(suppress=True)
177
+
178
+ # data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
179
+
180
+ # with open("labels.txt", "r") as file:
181
+ # labels = file.read().splitlines()
182
+
183
+ # messages = [
184
+ # {"role": "system", "content": system}
185
+ # ]
186
+
187
+ # def classify(platform,UserInput, Image, Textbox2, Textbox3):
188
+ # if Textbox3 == code:
189
+ # if Image is not None:
190
+ # output = []
191
+ # headers = {
192
+ # "Authorization": f"Bearer {auth2}"
193
+ # }
194
+ # if platform == "wh":
195
+ # get_image = requests.get(Image, headers=headers)
196
+ # print(get_image.content)
197
+ # elif platform == "web":
198
+ # print("WEB")
199
+ # else:
200
+ # pass
201
+ # image_data = np.array(get_image)
202
+ # image_data = cv.resize(image_data, (224, 224))
203
+ # image_array = np.asarray(image_data)
204
+ # normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
205
+ # data[0] = normalized_image_array
206
+
207
+ # import tensorflow as tf
208
+ # model = tf.keras.models.load_model('keras_model.h5')
209
+
210
+ # prediction = model.predict(data)
211
+
212
+ # max_label_index = None
213
+ # max_prediction_value = -1
214
+
215
+ # print('Prediction')
216
+
217
+ # Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
218
+ # Textbox2 = Textbox2.split(",")
219
+ # Textbox2_edited = [x.strip() for x in Textbox2]
220
+ # Textbox2_edited = list(Textbox2_edited)
221
+ # Textbox2_edited.append(UserInput)
222
+ # messages.append({"role": "user", "content": UserInput})
223
+
224
+ # for i, label in enumerate(labels):
225
+ # prediction_value = float(prediction[0][i])
226
+ # rounded_value = round(prediction_value, 2)
227
+ # print(f'{label}: {rounded_value}')
228
+
229
+ # if prediction_value > max_prediction_value:
230
+ # max_label_index = i
231
+ # max_prediction_value = prediction_value
232
+
233
+ # if max_label_index is not None:
234
+ # max_label = labels[max_label_index].split(' ', 1)[1]
235
+ # max_rounded_prediction = round(max_prediction_value, 2)
236
+ # print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
237
+
238
+ # time.sleep(1)
239
+ # if max_rounded_prediction > 0.5:
240
+ # print("\nWays to dispose of this waste: " + max_label)
241
+ # messages.append({"role": "user", "content": content + " " + max_label})
242
+
243
+ # headers = {
244
+ # "Content-Type": "application/json",
245
+ # "Authorization": f"Bearer {auth}"
246
+ # }
247
+
248
+ # response = requests.post(host, headers=headers, json={
249
+ # "messages": messages,
250
+ # "model": model_llm
251
+ # }).json()
252
+
253
+ # reply = response["choices"][0]["message"]["content"]
254
+ # messages.append({"role": "assistant", "content": reply})
255
+
256
+ # output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
257
+ # elif max_rounded_prediction < 0.5:
258
+ # output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
259
+
260
+ # return output
261
+
262
+ # else:
263
+ # output = []
264
+
265
+ # Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
266
+ # Textbox2 = Textbox2.split(",")
267
+ # Textbox2_edited = [x.strip() for x in Textbox2]
268
+ # Textbox2_edited = list(Textbox2_edited)
269
+ # Textbox2_edited.append(UserInput)
270
+
271
+ # for i in Textbox2_edited:
272
+ # messages.append(
273
+ # {"role": "user", "content": i}
274
+ # )
275
+
276
+ # print("messages after appending:", messages)
277
+
278
+ # time.sleep(1)
279
+ # messages.append({"role": "user", "content": UserInput})
280
+
281
+ # headers = {
282
+ # "Content-Type": "application/json",
283
+ # "Authorization": f"Bearer {auth}"
284
+ # }
285
+
286
+ # response = requests.post(host, headers=headers, json={
287
+ # "messages": messages,
288
+ # "model": model_llm
289
+ # }).json()
290
+
291
+ # reply = response["choices"][0]["message"]["content"]
292
+ # messages.append({"role": "assistant", "content": reply})
293
+
294
+ # output.append({"Mode": "Chat", "content": reply})
295
+
296
+ # return output
297
+
298
+ # else:
299
+ # return "Unauthorized"
300
+
301
+ # user_inputs = [
302
+ # gr.Textbox(label="Platform", type="text"),
303
+ # gr.Textbox(label="User Input", type="text"),
304
+ # gr.Textbox(label="Image", type="text"),
305
+ # gr.Textbox(label="Textbox2", type="text"),
306
+ # gr.Textbox(label="Textbox3", type="password")
307
+ # ]
308
+
309
+ # iface = gr.Interface(
310
+ # fn=classify,
311
+ # inputs=user_inputs,
312
+ # outputs=gr.outputs.JSON(),
313
+ # title="Classifier",
314
+ # )
315
+ # iface.launch()
316
+
317
+
318
  import gradio as gr
319
  import numpy as np
320
  import cv2 as cv
321
  import requests
 
322
  import os
323
+ import tensorflow as tf
324
 
325
  host = os.environ.get("host")
326
  code = os.environ.get("code")
 
330
  system = os.environ.get("system")
331
  auth = os.environ.get("auth")
332
  auth2 = os.environ.get("auth2")
 
 
 
 
 
333
 
 
334
  np.set_printoptions(suppress=True)
335
 
336
+ # Load the model outside of the function
337
+ model = tf.keras.models.load_model('keras_model.h5')
338
 
339
+ # Load labels from a file
340
  with open("labels.txt", "r") as file:
341
  labels = file.read().splitlines()
342
 
 
344
  {"role": "system", "content": system}
345
  ]
346
 
347
+ def classify(platform, UserInput, Image, Textbox2, Textbox3):
348
  if Textbox3 == code:
349
  if Image is not None:
350
  output = []
 
353
  }
354
  if platform == "wh":
355
  get_image = requests.get(Image, headers=headers)
356
+ image_data = cv.imdecode(np.asarray(bytearray(get_image.content), dtype="uint8"), cv.IMREAD_COLOR)
357
  elif platform == "web":
358
  print("WEB")
359
+ # Handle web case if needed
360
  else:
361
  pass
362
+
363
  image_data = cv.resize(image_data, (224, 224))
364
+ normalized_image_array = (image_data.astype(np.float32) / 127.0) - 1
 
365
  data[0] = normalized_image_array
366
+
 
 
 
367
  prediction = model.predict(data)
368
+
369
  max_label_index = None
370
  max_prediction_value = -1
371
+
372
  print('Prediction')
373
+
374
  Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
375
  Textbox2 = Textbox2.split(",")
376
  Textbox2_edited = [x.strip() for x in Textbox2]
377
  Textbox2_edited = list(Textbox2_edited)
378
  Textbox2_edited.append(UserInput)
379
  messages.append({"role": "user", "content": UserInput})
380
+
381
  for i, label in enumerate(labels):
382
  prediction_value = float(prediction[0][i])
383
  rounded_value = round(prediction_value, 2)
384
  print(f'{label}: {rounded_value}')
385
+
386
  if prediction_value > max_prediction_value:
387
  max_label_index = i
388
+ max_prediction_value = prediction_value
389
+
390
  if max_label_index is not None:
391
  max_label = labels[max_label_index].split(' ', 1)[1]
392
  max_rounded_prediction = round(max_prediction_value, 2)
393
  print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
394
+
 
395
  if max_rounded_prediction > 0.5:
396
  print("\nWays to dispose of this waste: " + max_label)
397
  messages.append({"role": "user", "content": content + " " + max_label})
398
+
399
  headers = {
400
  "Content-Type": "application/json",
401
  "Authorization": f"Bearer {auth}"
402
  }
403
+
404
  response = requests.post(host, headers=headers, json={
405
  "messages": messages,
406
  "model": model_llm
407
  }).json()
408
+
409
  reply = response["choices"][0]["message"]["content"]
410
  messages.append({"role": "assistant", "content": reply})
411
+
412
  output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
413
  elif max_rounded_prediction < 0.5:
414
+ output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
415
+
416
  return output
417
 
418
  else:
419
  output = []
420
+
421
  Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
422
  Textbox2 = Textbox2.split(",")
423
  Textbox2_edited = [x.strip() for x in Textbox2]
424
  Textbox2_edited = list(Textbox2_edited)
425
  Textbox2_edited.append(UserInput)
426
+
427
  for i in Textbox2_edited:
428
+ messages.append({"role": "user", "content": i})
429
+
 
 
430
  print("messages after appending:", messages)
431
+
 
432
  messages.append({"role": "user", "content": UserInput})
433
 
434
  headers = {
435
  "Content-Type": "application/json",
436
  "Authorization": f"Bearer {auth}"
437
  }
438
+
439
  response = requests.post(host, headers=headers, json={
440
  "messages": messages,
441
  "model": model_llm
442
  }).json()
443
+
444
  reply = response["choices"][0]["message"]["content"]
445
  messages.append({"role": "assistant", "content": reply})
446
 
447
  output.append({"Mode": "Chat", "content": reply})
 
 
448
 
449
+ return output
450
  else:
451
  return "Unauthorized"
452