Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -151,12 +151,176 @@
|
|
151 |
# iface.launch()
|
152 |
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
import gradio as gr
|
155 |
import numpy as np
|
156 |
import cv2 as cv
|
157 |
import requests
|
158 |
-
import time
|
159 |
import os
|
|
|
160 |
|
161 |
host = os.environ.get("host")
|
162 |
code = os.environ.get("code")
|
@@ -166,17 +330,13 @@ state = os.environ.get("state")
|
|
166 |
system = os.environ.get("system")
|
167 |
auth = os.environ.get("auth")
|
168 |
auth2 = os.environ.get("auth2")
|
169 |
-
data = None
|
170 |
-
model = None
|
171 |
-
image = None
|
172 |
-
prediction = None
|
173 |
-
labels = None
|
174 |
|
175 |
-
print('START')
|
176 |
np.set_printoptions(suppress=True)
|
177 |
|
178 |
-
|
|
|
179 |
|
|
|
180 |
with open("labels.txt", "r") as file:
|
181 |
labels = file.read().splitlines()
|
182 |
|
@@ -184,7 +344,7 @@ messages = [
|
|
184 |
{"role": "system", "content": system}
|
185 |
]
|
186 |
|
187 |
-
def classify(platform,UserInput, Image, Textbox2, Textbox3):
|
188 |
if Textbox3 == code:
|
189 |
if Image is not None:
|
190 |
output = []
|
@@ -193,108 +353,100 @@ def classify(platform,UserInput, Image, Textbox2, Textbox3):
|
|
193 |
}
|
194 |
if platform == "wh":
|
195 |
get_image = requests.get(Image, headers=headers)
|
196 |
-
|
197 |
elif platform == "web":
|
198 |
print("WEB")
|
|
|
199 |
else:
|
200 |
pass
|
201 |
-
|
202 |
image_data = cv.resize(image_data, (224, 224))
|
203 |
-
|
204 |
-
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
205 |
data[0] = normalized_image_array
|
206 |
-
|
207 |
-
import tensorflow as tf
|
208 |
-
model = tf.keras.models.load_model('keras_model.h5')
|
209 |
-
|
210 |
prediction = model.predict(data)
|
211 |
-
|
212 |
max_label_index = None
|
213 |
max_prediction_value = -1
|
214 |
-
|
215 |
print('Prediction')
|
216 |
-
|
217 |
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
218 |
Textbox2 = Textbox2.split(",")
|
219 |
Textbox2_edited = [x.strip() for x in Textbox2]
|
220 |
Textbox2_edited = list(Textbox2_edited)
|
221 |
Textbox2_edited.append(UserInput)
|
222 |
messages.append({"role": "user", "content": UserInput})
|
223 |
-
|
224 |
for i, label in enumerate(labels):
|
225 |
prediction_value = float(prediction[0][i])
|
226 |
rounded_value = round(prediction_value, 2)
|
227 |
print(f'{label}: {rounded_value}')
|
228 |
-
|
229 |
if prediction_value > max_prediction_value:
|
230 |
max_label_index = i
|
231 |
-
max_prediction_value = prediction_value
|
232 |
-
|
233 |
if max_label_index is not None:
|
234 |
max_label = labels[max_label_index].split(' ', 1)[1]
|
235 |
max_rounded_prediction = round(max_prediction_value, 2)
|
236 |
print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
237 |
-
|
238 |
-
time.sleep(1)
|
239 |
if max_rounded_prediction > 0.5:
|
240 |
print("\nWays to dispose of this waste: " + max_label)
|
241 |
messages.append({"role": "user", "content": content + " " + max_label})
|
242 |
-
|
243 |
headers = {
|
244 |
"Content-Type": "application/json",
|
245 |
"Authorization": f"Bearer {auth}"
|
246 |
}
|
247 |
-
|
248 |
response = requests.post(host, headers=headers, json={
|
249 |
"messages": messages,
|
250 |
"model": model_llm
|
251 |
}).json()
|
252 |
-
|
253 |
reply = response["choices"][0]["message"]["content"]
|
254 |
messages.append({"role": "assistant", "content": reply})
|
255 |
-
|
256 |
output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
257 |
elif max_rounded_prediction < 0.5:
|
258 |
-
output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one
|
259 |
-
|
260 |
return output
|
261 |
|
262 |
else:
|
263 |
output = []
|
264 |
-
|
265 |
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
266 |
Textbox2 = Textbox2.split(",")
|
267 |
Textbox2_edited = [x.strip() for x in Textbox2]
|
268 |
Textbox2_edited = list(Textbox2_edited)
|
269 |
Textbox2_edited.append(UserInput)
|
270 |
-
|
271 |
for i in Textbox2_edited:
|
272 |
-
messages.append(
|
273 |
-
|
274 |
-
)
|
275 |
-
|
276 |
print("messages after appending:", messages)
|
277 |
-
|
278 |
-
time.sleep(1)
|
279 |
messages.append({"role": "user", "content": UserInput})
|
280 |
|
281 |
headers = {
|
282 |
"Content-Type": "application/json",
|
283 |
"Authorization": f"Bearer {auth}"
|
284 |
}
|
285 |
-
|
286 |
response = requests.post(host, headers=headers, json={
|
287 |
"messages": messages,
|
288 |
"model": model_llm
|
289 |
}).json()
|
290 |
-
|
291 |
reply = response["choices"][0]["message"]["content"]
|
292 |
messages.append({"role": "assistant", "content": reply})
|
293 |
|
294 |
output.append({"Mode": "Chat", "content": reply})
|
295 |
-
|
296 |
-
return output
|
297 |
|
|
|
298 |
else:
|
299 |
return "Unauthorized"
|
300 |
|
|
|
151 |
# iface.launch()
|
152 |
|
153 |
|
154 |
+
# import gradio as gr
|
155 |
+
# import numpy as np
|
156 |
+
# import cv2 as cv
|
157 |
+
# import requests
|
158 |
+
# import time
|
159 |
+
# import os
|
160 |
+
|
161 |
+
# host = os.environ.get("host")
|
162 |
+
# code = os.environ.get("code")
|
163 |
+
# model_llm = os.environ.get("model")
|
164 |
+
# content = os.environ.get("content")
|
165 |
+
# state = os.environ.get("state")
|
166 |
+
# system = os.environ.get("system")
|
167 |
+
# auth = os.environ.get("auth")
|
168 |
+
# auth2 = os.environ.get("auth2")
|
169 |
+
# data = None
|
170 |
+
# model = None
|
171 |
+
# image = None
|
172 |
+
# prediction = None
|
173 |
+
# labels = None
|
174 |
+
|
175 |
+
# print('START')
|
176 |
+
# np.set_printoptions(suppress=True)
|
177 |
+
|
178 |
+
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
179 |
+
|
180 |
+
# with open("labels.txt", "r") as file:
|
181 |
+
# labels = file.read().splitlines()
|
182 |
+
|
183 |
+
# messages = [
|
184 |
+
# {"role": "system", "content": system}
|
185 |
+
# ]
|
186 |
+
|
187 |
+
# def classify(platform,UserInput, Image, Textbox2, Textbox3):
|
188 |
+
# if Textbox3 == code:
|
189 |
+
# if Image is not None:
|
190 |
+
# output = []
|
191 |
+
# headers = {
|
192 |
+
# "Authorization": f"Bearer {auth2}"
|
193 |
+
# }
|
194 |
+
# if platform == "wh":
|
195 |
+
# get_image = requests.get(Image, headers=headers)
|
196 |
+
# print(get_image.content)
|
197 |
+
# elif platform == "web":
|
198 |
+
# print("WEB")
|
199 |
+
# else:
|
200 |
+
# pass
|
201 |
+
# image_data = np.array(get_image)
|
202 |
+
# image_data = cv.resize(image_data, (224, 224))
|
203 |
+
# image_array = np.asarray(image_data)
|
204 |
+
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
|
205 |
+
# data[0] = normalized_image_array
|
206 |
+
|
207 |
+
# import tensorflow as tf
|
208 |
+
# model = tf.keras.models.load_model('keras_model.h5')
|
209 |
+
|
210 |
+
# prediction = model.predict(data)
|
211 |
+
|
212 |
+
# max_label_index = None
|
213 |
+
# max_prediction_value = -1
|
214 |
+
|
215 |
+
# print('Prediction')
|
216 |
+
|
217 |
+
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
218 |
+
# Textbox2 = Textbox2.split(",")
|
219 |
+
# Textbox2_edited = [x.strip() for x in Textbox2]
|
220 |
+
# Textbox2_edited = list(Textbox2_edited)
|
221 |
+
# Textbox2_edited.append(UserInput)
|
222 |
+
# messages.append({"role": "user", "content": UserInput})
|
223 |
+
|
224 |
+
# for i, label in enumerate(labels):
|
225 |
+
# prediction_value = float(prediction[0][i])
|
226 |
+
# rounded_value = round(prediction_value, 2)
|
227 |
+
# print(f'{label}: {rounded_value}')
|
228 |
+
|
229 |
+
# if prediction_value > max_prediction_value:
|
230 |
+
# max_label_index = i
|
231 |
+
# max_prediction_value = prediction_value
|
232 |
+
|
233 |
+
# if max_label_index is not None:
|
234 |
+
# max_label = labels[max_label_index].split(' ', 1)[1]
|
235 |
+
# max_rounded_prediction = round(max_prediction_value, 2)
|
236 |
+
# print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
237 |
+
|
238 |
+
# time.sleep(1)
|
239 |
+
# if max_rounded_prediction > 0.5:
|
240 |
+
# print("\nWays to dispose of this waste: " + max_label)
|
241 |
+
# messages.append({"role": "user", "content": content + " " + max_label})
|
242 |
+
|
243 |
+
# headers = {
|
244 |
+
# "Content-Type": "application/json",
|
245 |
+
# "Authorization": f"Bearer {auth}"
|
246 |
+
# }
|
247 |
+
|
248 |
+
# response = requests.post(host, headers=headers, json={
|
249 |
+
# "messages": messages,
|
250 |
+
# "model": model_llm
|
251 |
+
# }).json()
|
252 |
+
|
253 |
+
# reply = response["choices"][0]["message"]["content"]
|
254 |
+
# messages.append({"role": "assistant", "content": reply})
|
255 |
+
|
256 |
+
# output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
257 |
+
# elif max_rounded_prediction < 0.5:
|
258 |
+
# output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
|
259 |
+
|
260 |
+
# return output
|
261 |
+
|
262 |
+
# else:
|
263 |
+
# output = []
|
264 |
+
|
265 |
+
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
266 |
+
# Textbox2 = Textbox2.split(",")
|
267 |
+
# Textbox2_edited = [x.strip() for x in Textbox2]
|
268 |
+
# Textbox2_edited = list(Textbox2_edited)
|
269 |
+
# Textbox2_edited.append(UserInput)
|
270 |
+
|
271 |
+
# for i in Textbox2_edited:
|
272 |
+
# messages.append(
|
273 |
+
# {"role": "user", "content": i}
|
274 |
+
# )
|
275 |
+
|
276 |
+
# print("messages after appending:", messages)
|
277 |
+
|
278 |
+
# time.sleep(1)
|
279 |
+
# messages.append({"role": "user", "content": UserInput})
|
280 |
+
|
281 |
+
# headers = {
|
282 |
+
# "Content-Type": "application/json",
|
283 |
+
# "Authorization": f"Bearer {auth}"
|
284 |
+
# }
|
285 |
+
|
286 |
+
# response = requests.post(host, headers=headers, json={
|
287 |
+
# "messages": messages,
|
288 |
+
# "model": model_llm
|
289 |
+
# }).json()
|
290 |
+
|
291 |
+
# reply = response["choices"][0]["message"]["content"]
|
292 |
+
# messages.append({"role": "assistant", "content": reply})
|
293 |
+
|
294 |
+
# output.append({"Mode": "Chat", "content": reply})
|
295 |
+
|
296 |
+
# return output
|
297 |
+
|
298 |
+
# else:
|
299 |
+
# return "Unauthorized"
|
300 |
+
|
301 |
+
# user_inputs = [
|
302 |
+
# gr.Textbox(label="Platform", type="text"),
|
303 |
+
# gr.Textbox(label="User Input", type="text"),
|
304 |
+
# gr.Textbox(label="Image", type="text"),
|
305 |
+
# gr.Textbox(label="Textbox2", type="text"),
|
306 |
+
# gr.Textbox(label="Textbox3", type="password")
|
307 |
+
# ]
|
308 |
+
|
309 |
+
# iface = gr.Interface(
|
310 |
+
# fn=classify,
|
311 |
+
# inputs=user_inputs,
|
312 |
+
# outputs=gr.outputs.JSON(),
|
313 |
+
# title="Classifier",
|
314 |
+
# )
|
315 |
+
# iface.launch()
|
316 |
+
|
317 |
+
|
318 |
import gradio as gr
|
319 |
import numpy as np
|
320 |
import cv2 as cv
|
321 |
import requests
|
|
|
322 |
import os
|
323 |
+
import tensorflow as tf
|
324 |
|
325 |
host = os.environ.get("host")
|
326 |
code = os.environ.get("code")
|
|
|
330 |
system = os.environ.get("system")
|
331 |
auth = os.environ.get("auth")
|
332 |
auth2 = os.environ.get("auth2")
|
|
|
|
|
|
|
|
|
|
|
333 |
|
|
|
334 |
np.set_printoptions(suppress=True)
|
335 |
|
336 |
+
# Load the model outside of the function
|
337 |
+
model = tf.keras.models.load_model('keras_model.h5')
|
338 |
|
339 |
+
# Load labels from a file
|
340 |
with open("labels.txt", "r") as file:
|
341 |
labels = file.read().splitlines()
|
342 |
|
|
|
344 |
{"role": "system", "content": system}
|
345 |
]
|
346 |
|
347 |
+
def classify(platform, UserInput, Image, Textbox2, Textbox3):
|
348 |
if Textbox3 == code:
|
349 |
if Image is not None:
|
350 |
output = []
|
|
|
353 |
}
|
354 |
if platform == "wh":
|
355 |
get_image = requests.get(Image, headers=headers)
|
356 |
+
image_data = cv.imdecode(np.asarray(bytearray(get_image.content), dtype="uint8"), cv.IMREAD_COLOR)
|
357 |
elif platform == "web":
|
358 |
print("WEB")
|
359 |
+
# Handle web case if needed
|
360 |
else:
|
361 |
pass
|
362 |
+
|
363 |
image_data = cv.resize(image_data, (224, 224))
|
364 |
+
normalized_image_array = (image_data.astype(np.float32) / 127.0) - 1
|
|
|
365 |
data[0] = normalized_image_array
|
366 |
+
|
|
|
|
|
|
|
367 |
prediction = model.predict(data)
|
368 |
+
|
369 |
max_label_index = None
|
370 |
max_prediction_value = -1
|
371 |
+
|
372 |
print('Prediction')
|
373 |
+
|
374 |
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
375 |
Textbox2 = Textbox2.split(",")
|
376 |
Textbox2_edited = [x.strip() for x in Textbox2]
|
377 |
Textbox2_edited = list(Textbox2_edited)
|
378 |
Textbox2_edited.append(UserInput)
|
379 |
messages.append({"role": "user", "content": UserInput})
|
380 |
+
|
381 |
for i, label in enumerate(labels):
|
382 |
prediction_value = float(prediction[0][i])
|
383 |
rounded_value = round(prediction_value, 2)
|
384 |
print(f'{label}: {rounded_value}')
|
385 |
+
|
386 |
if prediction_value > max_prediction_value:
|
387 |
max_label_index = i
|
388 |
+
max_prediction_value = prediction_value
|
389 |
+
|
390 |
if max_label_index is not None:
|
391 |
max_label = labels[max_label_index].split(' ', 1)[1]
|
392 |
max_rounded_prediction = round(max_prediction_value, 2)
|
393 |
print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
|
394 |
+
|
|
|
395 |
if max_rounded_prediction > 0.5:
|
396 |
print("\nWays to dispose of this waste: " + max_label)
|
397 |
messages.append({"role": "user", "content": content + " " + max_label})
|
398 |
+
|
399 |
headers = {
|
400 |
"Content-Type": "application/json",
|
401 |
"Authorization": f"Bearer {auth}"
|
402 |
}
|
403 |
+
|
404 |
response = requests.post(host, headers=headers, json={
|
405 |
"messages": messages,
|
406 |
"model": model_llm
|
407 |
}).json()
|
408 |
+
|
409 |
reply = response["choices"][0]["message"]["content"]
|
410 |
messages.append({"role": "assistant", "content": reply})
|
411 |
+
|
412 |
output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
|
413 |
elif max_rounded_prediction < 0.5:
|
414 |
+
output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one"})
|
415 |
+
|
416 |
return output
|
417 |
|
418 |
else:
|
419 |
output = []
|
420 |
+
|
421 |
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
|
422 |
Textbox2 = Textbox2.split(",")
|
423 |
Textbox2_edited = [x.strip() for x in Textbox2]
|
424 |
Textbox2_edited = list(Textbox2_edited)
|
425 |
Textbox2_edited.append(UserInput)
|
426 |
+
|
427 |
for i in Textbox2_edited:
|
428 |
+
messages.append({"role": "user", "content": i})
|
429 |
+
|
|
|
|
|
430 |
print("messages after appending:", messages)
|
431 |
+
|
|
|
432 |
messages.append({"role": "user", "content": UserInput})
|
433 |
|
434 |
headers = {
|
435 |
"Content-Type": "application/json",
|
436 |
"Authorization": f"Bearer {auth}"
|
437 |
}
|
438 |
+
|
439 |
response = requests.post(host, headers=headers, json={
|
440 |
"messages": messages,
|
441 |
"model": model_llm
|
442 |
}).json()
|
443 |
+
|
444 |
reply = response["choices"][0]["message"]["content"]
|
445 |
messages.append({"role": "assistant", "content": reply})
|
446 |
|
447 |
output.append({"Mode": "Chat", "content": reply})
|
|
|
|
|
448 |
|
449 |
+
return output
|
450 |
else:
|
451 |
return "Unauthorized"
|
452 |
|