File size: 2,515 Bytes
a35163f 683cf67 f1f9df6 a35163f 1e2ba54 a35163f 1e2ba54 a35163f 1e2ba54 a35163f 1e2ba54 f1f9df6 a35163f 683cf67 a35163f 448c406 a35163f 448c406 a35163f 448c406 a35163f 448c406 a35163f 666bc15 a35163f 448c406 a35163f 448c406 a35163f ed9cd5d 909f50c 683cf67 448c406 a35163f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# import gradio as gr
# from langchain.llms import LlamaCpp
# from langchain import PromptTemplate, LLMChain
# from langchain.llms import GPT4All
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# # import requests
# # url = "https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin"
# # response = requests.get(url)
# # with open("nous-hermes-13b.ggmlv3.q4_0.bin", "wb") as f:
# # f.write(response.content)
# print("DONE")
# def func(user):
# template = """
# Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?.
# Question: {question}
# Answer: """
# prompt = PromptTemplate(template=template, input_variables=["question"])
# local_path = (
# "./nous-hermes-13b.ggmlv3.q4_0.bin"
# )
# # # Callbacks support token-wise streaming
# # callbacks = [StreamingStdOutCallbackHandler()]
# # Verbose is required to pass to the callback manager
# llm = LlamaCpp(model_path="./nous-hermes-13b.ggmlv3.q4_0.bin", n_ctx=2048)
# llm_chain = LLMChain(prompt=prompt, llm=llm)
# question = user
# llm_chain.run(question)
# return llm_chain.run(question)
# iface = gr.Interface(fn=func, inputs="text", outputs="text")
# iface.launch()
import gradio as gr
from langchain.llms import LlamaCpp
from langchain import PromptTemplate, LLMChain
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
print("DONE")
def func(user):
template = """
Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?.
Question: {question}
Answer: """
prompt = PromptTemplate(template=template, input_variables=["question"])
local_path = "./nous-hermes-13b.ggmlv3.q4_0.bin"
llm = LlamaCpp(model_path=local_path, n_ctx=2048)
llm_chain = LLMChain(prompt=prompt, llm=llm, streaming=True) # Enable streaming mode
question = user
llm_chain.run(question)
return llm_chain.run(question)
iface = gr.Interface(fn=func, inputs="text", outputs="text")
iface.launch()
|