|
import gradio as gr |
|
from langchain import PromptTemplate, LLMChain |
|
from langchain.llms import GPT4All |
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler |
|
|
|
import requests |
|
|
|
url = "https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin" |
|
|
|
response = requests.get(url) |
|
|
|
with open("nous-hermes-13b.ggmlv3.q4_0.bin",w) as f: |
|
f.write(response.content) |
|
|
|
print("DONE") |
|
|
|
def func(prompt): |
|
|
|
template = """Question: {question} |
|
|
|
Answer: Let's think step by step.""" |
|
|
|
prompt = PromptTemplate(template=template, input_variables=["question"]) |
|
|
|
local_path = ( |
|
"./file=nous-hermes-13b.ggmlv3.q4_0.bin" |
|
) |
|
|
|
|
|
callbacks = [StreamingStdOutCallbackHandler()] |
|
|
|
|
|
llm = GPT4All(model=local_path, callbacks=callbacks, verbose=True) |
|
|
|
|
|
|
|
llm = GPT4All(model=local_path, backend="gptj", callbacks=callbacks, verbose=True) |
|
|
|
llm_chain = LLMChain(prompt=prompt, llm=llm) |
|
question = prompt |
|
|
|
return llm_chain.run(question) |
|
|
|
iface = gr.Interface(fn=func, inputs="text", outputs="text") |
|
iface.launch() |