tommy24 commited on
Commit
be29a68
·
1 Parent(s): 720f5ba

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -55
app.py CHANGED
@@ -1,50 +1,50 @@
1
- # import gradio as gr
2
- # from langchain.llms import LlamaCpp
3
- # from langchain import PromptTemplate, LLMChain
4
- # from langchain.llms import GPT4All
5
- # from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
6
 
7
 
8
- # # import requests
9
 
10
- # # url = "https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin"
11
 
12
- # # response = requests.get(url)
13
 
14
- # # with open("nous-hermes-13b.ggmlv3.q4_0.bin", "wb") as f:
15
- # # f.write(response.content)
16
 
17
 
18
- # print("DONE")
19
 
20
- # def func(user):
21
 
22
- # template = """
23
- # Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?.
24
- # Question: {question}
25
 
26
- # Answer: """
27
 
28
- # prompt = PromptTemplate(template=template, input_variables=["question"])
29
 
30
- # local_path = (
31
- # "./nous-hermes-13b.ggmlv3.q4_0.bin"
32
- # )
33
 
34
 
35
- # # # Callbacks support token-wise streaming
36
- # # callbacks = [StreamingStdOutCallbackHandler()]
37
 
38
- # # Verbose is required to pass to the callback manager
39
- # llm = LlamaCpp(model_path="./nous-hermes-13b.ggmlv3.q4_0.bin", n_ctx=2048)
40
- # llm_chain = LLMChain(prompt=prompt, llm=llm)
41
- # question = user
42
- # llm_chain.run(question)
43
 
44
- # return llm_chain.run(question)
45
 
46
- # iface = gr.Interface(fn=func, inputs="text", outputs="text")
47
- # iface.launch()
48
 
49
  # import gradio as gr
50
  # from langchain.llms import LlamaCpp
@@ -73,28 +73,3 @@
73
 
74
  # iface = gr.Interface(fn=func, inputs="text", outputs="text")
75
  # iface.launch()
76
-
77
-
78
- import gradio as gr
79
- from gpt4allj import Model
80
-
81
- # Load the local model
82
- model = Model('./ggml-gpt4all-j-v1.3-groovy.bin')
83
-
84
- # Define a function that generates the model's response given a prompt
85
- def generate_response(prompt):
86
- response = model.generate(prompt)
87
- return response
88
-
89
- # Create a Gradio interface with a text input and an output text box
90
- iface = gr.Interface(
91
- fn=generate_response,
92
- inputs="text",
93
- outputs="text",
94
- title="GPT-4 AllJ",
95
- description="Generate responses using GPT-4 AllJ model."
96
- )
97
-
98
- # Run the Gradio interface
99
- iface.launch()
100
-
 
1
+ import gradio as gr
2
+ from langchain.llms import LlamaCpp
3
+ from langchain import PromptTemplate, LLMChain
4
+ from langchain.llms import GPT4All
5
+ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
6
 
7
 
8
+ # import requests
9
 
10
+ # url = "https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin"
11
 
12
+ # response = requests.get(url)
13
 
14
+ # with open("nous-hermes-13b.ggmlv3.q4_0.bin", "wb") as f:
15
+ # f.write(response.content)
16
 
17
 
18
+ print("DONE")
19
 
20
+ def func(user):
21
 
22
+ template = """
23
+ Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?.
24
+ Question: {question}
25
 
26
+ Answer: """
27
 
28
+ prompt = PromptTemplate(template=template, input_variables=["question"])
29
 
30
+ local_path = (
31
+ "./nous-hermes-13b.ggmlv3.q4_0.bin"
32
+ )
33
 
34
 
35
+ # # Callbacks support token-wise streaming
36
+ # callbacks = [StreamingStdOutCallbackHandler()]
37
 
38
+ # Verbose is required to pass to the callback manager
39
+ llm = LlamaCpp(model_path=".ggml-gpt4all-j-v1.3-groovy.bin")
40
+ llm_chain = LLMChain(prompt=prompt, llm=llm)
41
+ question = user
42
+ llm_chain.run(question)
43
 
44
+ return llm_chain.run(question)
45
 
46
+ iface = gr.Interface(fn=func, inputs="text", outputs="text")
47
+ iface.launch()
48
 
49
  # import gradio as gr
50
  # from langchain.llms import LlamaCpp
 
73
 
74
  # iface = gr.Interface(fn=func, inputs="text", outputs="text")
75
  # iface.launch()