Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,50 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
|
7 |
|
8 |
-
#
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
#
|
13 |
|
14 |
-
#
|
15 |
-
#
|
16 |
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
|
35 |
-
#
|
36 |
-
#
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
|
49 |
# import gradio as gr
|
50 |
# from langchain.llms import LlamaCpp
|
@@ -73,28 +73,3 @@
|
|
73 |
|
74 |
# iface = gr.Interface(fn=func, inputs="text", outputs="text")
|
75 |
# iface.launch()
|
76 |
-
|
77 |
-
|
78 |
-
import gradio as gr
|
79 |
-
from gpt4allj import Model
|
80 |
-
|
81 |
-
# Load the local model
|
82 |
-
model = Model('./ggml-gpt4all-j-v1.3-groovy.bin')
|
83 |
-
|
84 |
-
# Define a function that generates the model's response given a prompt
|
85 |
-
def generate_response(prompt):
|
86 |
-
response = model.generate(prompt)
|
87 |
-
return response
|
88 |
-
|
89 |
-
# Create a Gradio interface with a text input and an output text box
|
90 |
-
iface = gr.Interface(
|
91 |
-
fn=generate_response,
|
92 |
-
inputs="text",
|
93 |
-
outputs="text",
|
94 |
-
title="GPT-4 AllJ",
|
95 |
-
description="Generate responses using GPT-4 AllJ model."
|
96 |
-
)
|
97 |
-
|
98 |
-
# Run the Gradio interface
|
99 |
-
iface.launch()
|
100 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.llms import LlamaCpp
|
3 |
+
from langchain import PromptTemplate, LLMChain
|
4 |
+
from langchain.llms import GPT4All
|
5 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
6 |
|
7 |
|
8 |
+
# import requests
|
9 |
|
10 |
+
# url = "https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin"
|
11 |
|
12 |
+
# response = requests.get(url)
|
13 |
|
14 |
+
# with open("nous-hermes-13b.ggmlv3.q4_0.bin", "wb") as f:
|
15 |
+
# f.write(response.content)
|
16 |
|
17 |
|
18 |
+
print("DONE")
|
19 |
|
20 |
+
def func(user):
|
21 |
|
22 |
+
template = """
|
23 |
+
Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?.
|
24 |
+
Question: {question}
|
25 |
|
26 |
+
Answer: """
|
27 |
|
28 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
29 |
|
30 |
+
local_path = (
|
31 |
+
"./nous-hermes-13b.ggmlv3.q4_0.bin"
|
32 |
+
)
|
33 |
|
34 |
|
35 |
+
# # Callbacks support token-wise streaming
|
36 |
+
# callbacks = [StreamingStdOutCallbackHandler()]
|
37 |
|
38 |
+
# Verbose is required to pass to the callback manager
|
39 |
+
llm = LlamaCpp(model_path=".ggml-gpt4all-j-v1.3-groovy.bin")
|
40 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
41 |
+
question = user
|
42 |
+
llm_chain.run(question)
|
43 |
|
44 |
+
return llm_chain.run(question)
|
45 |
|
46 |
+
iface = gr.Interface(fn=func, inputs="text", outputs="text")
|
47 |
+
iface.launch()
|
48 |
|
49 |
# import gradio as gr
|
50 |
# from langchain.llms import LlamaCpp
|
|
|
73 |
|
74 |
# iface = gr.Interface(fn=func, inputs="text", outputs="text")
|
75 |
# iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|