tommy24 commited on
Commit
0b7f87e
·
1 Parent(s): 0a35322

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +96 -40
app.py CHANGED
@@ -74,53 +74,109 @@
74
  # iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
75
  # iface.launch()
76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  import gradio as gr
78
  import requests
79
- import urllib.request
80
- from pydub import AudioSegment
81
- import numpy as np
82
  import os
83
- import sys
84
- import wave
85
- import io
86
- import base64
87
- import azure.cognitiveservices.speech as speechsdk
88
-
89
- speech_key = os.environ.get("test3")
90
- service_region = os.environ.get("test4")
91
-
92
- speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
93
- # Note: the voice setting will not overwrite the voice element in input SSML.
94
- speech_config.speech_synthesis_voice_name = os.environ.get("test5")
95
 
96
- def function1(prompt):
97
  response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
98
  "data": [
99
  prompt,
100
  ]}).json()
101
  message = response["data"][0]
102
- speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config)
103
- result = speech_synthesizer.speak_text_async(message).get()
104
- if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
105
- audio_stream = io.BytesIO(result.audio_data)
106
-
107
- # Create a wave file object and write the audio data to it
108
- with wave.open("audio.wav", 'wb') as wave_file:
109
- wave_file.setnchannels(1)
110
- wave_file.setsampwidth(2)
111
- wave_file.setframerate(16000)
112
- wave_file.writeframesraw(audio_stream.getvalue())
113
-
114
- # Use ffmpeg to convert the wave file to an mp3 file
115
- filename = "output.mp3"
116
-
117
- if os.path.exists(filename):
118
- os.remove(filename)
119
- else:
120
- pass
121
- command = f"ffmpeg -i audio.wav -y -codec:a libmp3lame -qscale:a 2 {filename}"
122
- os.system(command)
123
- return "output.mp3"
124
-
125
- iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  iface.launch()
 
74
  # iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
75
  # iface.launch()
76
 
77
+ # import gradio as gr
78
+ # import requests
79
+ # import urllib.request
80
+ # from pydub import AudioSegment
81
+ # import numpy as np
82
+ # import os
83
+ # import sys
84
+ # import wave
85
+ # import io
86
+ # import base64
87
+ # import azure.cognitiveservices.speech as speechsdk
88
+
89
+ # speech_key = os.environ.get("test3")
90
+ # service_region = os.environ.get("test4")
91
+
92
+ # speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
93
+ # # Note: the voice setting will not overwrite the voice element in input SSML.
94
+ # speech_config.speech_synthesis_voice_name = os.environ.get("test5")
95
+
96
+ # def function1(prompt):
97
+ # response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
98
+ # "data": [
99
+ # prompt,
100
+ # ]}).json()
101
+ # message = response["data"][0]
102
+ # speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config)
103
+ # result = speech_synthesizer.speak_text_async(message).get()
104
+ # if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
105
+ # audio_stream = io.BytesIO(result.audio_data)
106
+
107
+ # # Create a wave file object and write the audio data to it
108
+ # with wave.open("audio.wav", 'wb') as wave_file:
109
+ # wave_file.setnchannels(1)
110
+ # wave_file.setsampwidth(2)
111
+ # wave_file.setframerate(16000)
112
+ # wave_file.writeframesraw(audio_stream.getvalue())
113
+
114
+ # # Use ffmpeg to convert the wave file to an mp3 file
115
+ # filename = "output.mp3"
116
+
117
+ # if os.path.exists(filename):
118
+ # os.remove(filename)
119
+ # else:
120
+ # pass
121
+ # command = f"ffmpeg -i audio.wav -y -codec:a libmp3lame -qscale:a 2 {filename}"
122
+ # os.system(command)
123
+ # return "output.mp3"
124
+
125
+ # iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
126
+ # iface.launch()
127
+
128
  import gradio as gr
129
  import requests
 
 
 
130
  import os
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
+ def function2(prompt):
133
  response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
134
  "data": [
135
  prompt,
136
  ]}).json()
137
  message = response["data"][0]
138
+
139
+ url = "https://api.dynapictures.com/designs/7c4aba1d73"
140
+ headers = {
141
+ "Authorization": "Bearer d11937f0c9b7f55db1916f11abbe05c5917798f562506f11",
142
+ "Content-Type": "application/json"
143
+ }
144
+
145
+ payload = {
146
+ "format": "jpeg",
147
+ "metadata": "some text",
148
+ "params": [
149
+ {
150
+ "name": "bubble",
151
+ "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/568b337221.png"
152
+ },
153
+ {
154
+ "name": "quotes",
155
+ "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/779f8b9041.png"
156
+ },
157
+ {
158
+ "name": "text",
159
+ "text": message
160
+ },
161
+ {
162
+ "name": "avatar",
163
+ "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/2f7ddd7b55.jpg"
164
+ },
165
+ {
166
+ "name": "name",
167
+ "text": "JohnAI"
168
+ },
169
+ {
170
+ "name": "title",
171
+ "text": "Automated"
172
+ }
173
+ ]
174
+ }
175
+
176
+ response = requests.post(url, headers=headers, data=json.dumps(payload))
177
+ response = response.json()
178
+ response = response["imageUrl"]
179
+ return response
180
+
181
+ iface = gr.Interface(fn=function1, inputs="text", outputs="text")
182
  iface.launch()