Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
|
|
|
|
|
|
3 |
import os
|
4 |
|
5 |
def function1(prompt):
|
@@ -7,31 +49,27 @@ def function1(prompt):
|
|
7 |
"data": [
|
8 |
prompt,
|
9 |
]}).json()
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
os.remove(file_path)
|
32 |
-
with open(file_path, 'wb') as f:
|
33 |
-
f.write(response.content)
|
34 |
-
return "test.mp3"
|
35 |
|
36 |
iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
|
37 |
iface.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import requests
|
3 |
+
# import os
|
4 |
+
|
5 |
+
# def function1(prompt):
|
6 |
+
# response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={
|
7 |
+
# "data": [
|
8 |
+
# prompt,
|
9 |
+
# ]}).json()
|
10 |
+
# message = response["data"][0]
|
11 |
+
# url = 'https://api.elevenlabs.io/v1/text-to-speech/pNInz6obpgDQGcFmaJgB'
|
12 |
+
|
13 |
+
# headers = {
|
14 |
+
# 'accept': 'audio/mpeg',
|
15 |
+
# 'xi-api-key': os.environ.get("test2"),
|
16 |
+
# 'Content-Type': 'application/json'
|
17 |
+
# }
|
18 |
+
|
19 |
+
# data = {
|
20 |
+
# "text": message,
|
21 |
+
# "voice_settings": {
|
22 |
+
# "stability": 0,
|
23 |
+
# "similarity_boost": 0
|
24 |
+
# }
|
25 |
+
# }
|
26 |
+
|
27 |
+
# response = requests.post(url, headers=headers, json=data)
|
28 |
+
# if response.status_code == 200:
|
29 |
+
# file_path = 'test.mp3'
|
30 |
+
# if os.path.isfile(file_path):
|
31 |
+
# os.remove(file_path)
|
32 |
+
# with open(file_path, 'wb') as f:
|
33 |
+
# f.write(response.content)
|
34 |
+
# return "test.mp3"
|
35 |
+
|
36 |
+
# iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
|
37 |
+
# iface.launch()
|
38 |
+
|
39 |
+
|
40 |
import gradio as gr
|
41 |
import requests
|
42 |
+
import urllib.request
|
43 |
+
from pydub import AudioSegment
|
44 |
+
import numpy as np
|
45 |
import os
|
46 |
|
47 |
def function1(prompt):
|
|
|
49 |
"data": [
|
50 |
prompt,
|
51 |
]}).json()
|
52 |
+
data = response["data"][0]
|
53 |
+
response = requests.post("https://matthijs-speecht5-tts-demo.hf.space/run/predict", json={
|
54 |
+
"data": [
|
55 |
+
data,
|
56 |
+
"KSP (male)",
|
57 |
+
]
|
58 |
+
}).json()
|
59 |
+
data = response["data"][0]["name"]
|
60 |
+
data = "https://matthijs-speecht5-tts-demo.hf.space/file="+data
|
61 |
+
file_name, headers = urllib.request.urlretrieve(data, "speech.mp3")
|
62 |
+
# code = random.randint(1,1000)
|
63 |
+
# generated_file = f"output{code}"
|
64 |
+
filename = "output.mp3"
|
65 |
+
|
66 |
+
if os.path.exists(filename):
|
67 |
+
os.remove(filename)
|
68 |
+
else:
|
69 |
+
pass
|
70 |
+
command = f"ffmpeg -i {file_name} -vn -ar 44100 -ac 2 -b:a 192k output.mp3"
|
71 |
+
os.system(command)
|
72 |
+
return "output.mp3"
|
|
|
|
|
|
|
|
|
73 |
|
74 |
iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")])
|
75 |
iface.launch()
|