# import gradio as gr # import requests # import os # def function1(prompt): # response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={ # "data": [ # prompt, # ]}).json() # message = response["data"][0] # url = 'https://api.elevenlabs.io/v1/text-to-speech/pNInz6obpgDQGcFmaJgB' # headers = { # 'accept': 'audio/mpeg', # 'xi-api-key': os.environ.get("test2"), # 'Content-Type': 'application/json' # } # data = { # "text": message, # "voice_settings": { # "stability": 0, # "similarity_boost": 0 # } # } # response = requests.post(url, headers=headers, json=data) # if response.status_code == 200: # file_path = 'test.mp3' # if os.path.isfile(file_path): # os.remove(file_path) # with open(file_path, 'wb') as f: # f.write(response.content) # return "test.mp3" # iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")]) # iface.launch() # import gradio as gr # import requests # import urllib.request # from pydub import AudioSegment # import numpy as np # import os # def function1(prompt): # response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={ # "data": [ # prompt, # ]}).json() # data = response["data"][0] # response = requests.post("https://matthijs-speecht5-tts-demo.hf.space/run/predict", json={ # "data": [ # data, # "KSP (male)", # ] # }).json() # data = response["data"][0]["name"] # data = "https://matthijs-speecht5-tts-demo.hf.space/file="+data # file_name, headers = urllib.request.urlretrieve(data, "speech.mp3") # # code = random.randint(1,1000) # # generated_file = f"output{code}" # filename = "output.mp3" # if os.path.exists(filename): # os.remove(filename) # else: # pass # command = f"ffmpeg -i {file_name} -vn -ar 44100 -ac 2 -b:a 192k output.mp3" # os.system(command) # return "output.mp3" # iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")]) # iface.launch() # import gradio as gr # import requests # import urllib.request # from pydub import AudioSegment # import numpy as np # import os # import sys # import wave # import io # import base64 # import azure.cognitiveservices.speech as speechsdk # speech_key = os.environ.get("test3") # service_region = os.environ.get("test4") # speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region) # # Note: the voice setting will not overwrite the voice element in input SSML. # speech_config.speech_synthesis_voice_name = os.environ.get("test5") # def function1(prompt): # response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={ # "data": [ # prompt, # ]}).json() # message = response["data"][0] # speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config) # result = speech_synthesizer.speak_text_async(message).get() # if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted: # audio_stream = io.BytesIO(result.audio_data) # # Create a wave file object and write the audio data to it # with wave.open("audio.wav", 'wb') as wave_file: # wave_file.setnchannels(1) # wave_file.setsampwidth(2) # wave_file.setframerate(16000) # wave_file.writeframesraw(audio_stream.getvalue()) # # Use ffmpeg to convert the wave file to an mp3 file # filename = "output.mp3" # if os.path.exists(filename): # os.remove(filename) # else: # pass # command = f"ffmpeg -i audio.wav -y -codec:a libmp3lame -qscale:a 2 {filename}" # os.system(command) # return "output.mp3" # iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")]) # iface.launch() import gradio as gr import requests import os def function2(prompt): response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={ "data": [ prompt, ]}).json() message = response["data"][0] url = "https://api.dynapictures.com/designs/7c4aba1d73" test6 = os.environ.get("test6") headers = { "Authorization": f"Bearer {test6}", "Content-Type": "application/json" } payload = { "format": "jpeg", "metadata": "some text", "params": [ { "name": "bubble", "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/568b337221.png" }, { "name": "quotes", "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/779f8b9041.png" }, { "name": "text", "text": message }, { "name": "avatar", "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/2f7ddd7b55.jpg" }, { "name": "name", "text": "JohnAI" }, { "name": "title", "text": "Automated" } ] } response = requests.post(url, headers=headers, data=json.dumps(payload)) response = response.json() response = response["imageUrl"] return response iface = gr.Interface(fn=function2, inputs="text", outputs="text") iface.launch()