# import gradio as gr # import requests # import os # def function1(prompt): # response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={ # "data": [ # prompt, # ]}).json() # message = response["data"][0] # url = 'https://api.elevenlabs.io/v1/text-to-speech/pNInz6obpgDQGcFmaJgB' # headers = { # 'accept': 'audio/mpeg', # 'xi-api-key': os.environ.get("test2"), # 'Content-Type': 'application/json' # } # data = { # "text": message, # "voice_settings": { # "stability": 0, # "similarity_boost": 0 # } # } # response = requests.post(url, headers=headers, json=data) # if response.status_code == 200: # file_path = 'test.mp3' # if os.path.isfile(file_path): # os.remove(file_path) # with open(file_path, 'wb') as f: # f.write(response.content) # return "test.mp3" # iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")]) # iface.launch() # import gradio as gr # import requests # import urllib.request # from pydub import AudioSegment # import numpy as np # import os # def function1(prompt): # response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={ # "data": [ # prompt, # ]}).json() # data = response["data"][0] # response = requests.post("https://matthijs-speecht5-tts-demo.hf.space/run/predict", json={ # "data": [ # data, # "KSP (male)", # ] # }).json() # data = response["data"][0]["name"] # data = "https://matthijs-speecht5-tts-demo.hf.space/file="+data # file_name, headers = urllib.request.urlretrieve(data, "speech.mp3") # # code = random.randint(1,1000) # # generated_file = f"output{code}" # filename = "output.mp3" # if os.path.exists(filename): # os.remove(filename) # else: # pass # command = f"ffmpeg -i {file_name} -vn -ar 44100 -ac 2 -b:a 192k output.mp3" # os.system(command) # return "output.mp3" # iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")]) # iface.launch() import gradio as gr import requests import urllib.request from pydub import AudioSegment import numpy as np import os import sys import wave import io import base64 import azure.cognitiveservices.speech as speechsdk speech_key = os.environ.get("test3") service_region = os.environ.get("test4") speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region) # Note: the voice setting will not overwrite the voice element in input SSML. speech_config.speech_synthesis_voice_name = os.environ.get("test5") def function1(prompt): response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={ "data": [ prompt, ]}).json() message = response["data"][0] speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config) result = speech_synthesizer.speak_text_async(message).get() if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted: audio_stream = io.BytesIO(result.audio_data) # Create a wave file object and write the audio data to it with wave.open("audio.wav", 'wb') as wave_file: wave_file.setnchannels(1) wave_file.setsampwidth(2) wave_file.setframerate(16000) wave_file.writeframesraw(audio_stream.getvalue()) # Use ffmpeg to convert the wave file to an mp3 file filename = "output.mp3" if os.path.exists(filename): os.remove(filename) else: pass command = f"ffmpeg -i audio.wav -y -codec:a libmp3lame -qscale:a 2 {filename}" os.system(command) return "output.mp3" iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")]) iface.launch() # import gradio as gr # import requests # import json # import os # def function2(prompt): # response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={ # "data": [ # prompt, # ]}).json() # message = response["data"][0] # url = "https://api.dynapictures.com/designs/7c4aba1d73" # test6 = os.environ.get("test6") # headers = { # "Authorization": f"Bearer {test6}", # "Content-Type": "application/json" # } # payload = { # "format": "jpeg", # "metadata": "some text", # "params": [ # { # "name": "bubble", # "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/568b337221.png" # }, # { # "name": "quotes", # "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/779f8b9041.png" # }, # { # "name": "text", # "text": message # }, # { # "name": "avatar", # "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/2f7ddd7b55.jpg" # }, # { # "name": "name", # "text": "JohnAI" # }, # { # "name": "title", # "text": "Automated" # } # ] # } # response = requests.post(url, headers=headers, data=json.dumps(payload)) # response = response.json() # response = response["imageUrl"] # return response # iface = gr.Interface(fn=function2, inputs="text", outputs="text") # iface.launch()