# import gradio as gr # import requests # import os # def function1(prompt): # response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={ # "data": [ # prompt, # ]}).json() # message = response["data"][0] # url = 'https://api.elevenlabs.io/v1/text-to-speech/pNInz6obpgDQGcFmaJgB' # headers = { # 'accept': 'audio/mpeg', # 'xi-api-key': os.environ.get("test2"), # 'Content-Type': 'application/json' # } # data = { # "text": message, # "voice_settings": { # "stability": 0, # "similarity_boost": 0 # } # } # response = requests.post(url, headers=headers, json=data) # if response.status_code == 200: # file_path = 'test.mp3' # if os.path.isfile(file_path): # os.remove(file_path) # with open(file_path, 'wb') as f: # f.write(response.content) # return "test.mp3" # iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")]) # iface.launch() # import gradio as gr # import requests # import urllib.request # from pydub import AudioSegment # import numpy as np # import os # def function1(prompt): # response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={ # "data": [ # prompt, # ]}).json() # data = response["data"][0] # response = requests.post("https://matthijs-speecht5-tts-demo.hf.space/run/predict", json={ # "data": [ # data, # "KSP (male)", # ] # }).json() # data = response["data"][0]["name"] # data = "https://matthijs-speecht5-tts-demo.hf.space/file="+data # file_name, headers = urllib.request.urlretrieve(data, "speech.mp3") # # code = random.randint(1,1000) # # generated_file = f"output{code}" # filename = "output.mp3" # if os.path.exists(filename): # os.remove(filename) # else: # pass # command = f"ffmpeg -i {file_name} -vn -ar 44100 -ac 2 -b:a 192k output.mp3" # os.system(command) # return "output.mp3" # iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")]) # iface.launch() import requests import base64 import os import gradio as gr def function(prompt): target = os.environ.get("target") response = requests.post(target, json={ ###################################### WORKING API###################################### "prompt": [ prompt, ]}) data = response data = str(data.content,"utf-8") result = base64.b64encode(data.encode('utf-8')) result2 = result.decode('utf-8') return result2 iface = gr.Interface(fn=function, inputs="text", outputs="text") iface.launch() # import gradio as gr # import requests # import base64 # import time # import os # import re # def function(prompt): # url = os.environ.get("test7") # referrer = os.environ.get("test13") # headers = { # "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36 Edge/16.16299", # "Accept": "application/json", # "Accept-Language": "en-US,en;q=0.5", # "Referer": referrer, # "Connection": "keep-alive", # "TE": "Trailers", # "Flag-Real-Time-Data": "true" # } # data = { # "input": prompt # } # response = requests.post(url, headers=headers, json=data) # response = response.json() # output = response["output"] # trigger1 = os.environ.get("test9") # trigger2 = os.environ.get("test10") # set1 = os.environ.get("test11") # set2 = os.environ.get("test12") # if trigger1 in output and trigger2 in output: # output = re.sub(trigger2, set1, output) # output = re.sub(trigger1, set2, output) # result = base64.b64encode(output.encode('utf-8')) # result2 = result.decode('utf-8') # return output # iface = gr.Interface(fn=function, inputs="text", outputs="text") # iface.launch() # ******************************************************************************************** # import gradio as gr # import requests # import urllib.request # from pydub import AudioSegment # import numpy as np # import os # import sys # import wave # import io # import base64 # import azure.cognitiveservices.speech as speechsdk # speech_key = os.environ.get("test3") # service_region = os.environ.get("test4") # speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region) # # Note: the voice setting will not overwrite the voice element in input SSML. # speech_config.speech_synthesis_voice_name = os.environ.get("test5") # def function1(prompt): # response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={ # "data": [ # prompt, # ]}).json() # message = response["data"][0] # speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config) # result = speech_synthesizer.speak_text_async(message).get() # if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted: # audio_stream = io.BytesIO(result.audio_data) # # Create a wave file object and write the audio data to it # with wave.open("audio.wav", 'wb') as wave_file: # wave_file.setnchannels(1) # wave_file.setsampwidth(2) # wave_file.setframerate(16000) # wave_file.writeframesraw(audio_stream.getvalue()) # # Use ffmpeg to convert the wave file to an mp3 file # filename = "output.mp3" # if os.path.exists(filename): # os.remove(filename) # else: # pass # command = f"ffmpeg -i audio.wav -y -codec:a libmp3lame -qscale:a 2 {filename}" # os.system(command) # return "output.mp3" # iface = gr.Interface(fn=function1, inputs="text", outputs=[gr.Audio(label="Audio",type="numpy")]) # iface.launch() # import gradio as gr # import requests # import json # import os # def function2(prompt): # response = requests.post("https://tommy24-testing3.hf.space/run/predict", json={ # "data": [ # prompt, # ]}).json() # message = response["data"][0] # url = "https://api.dynapictures.com/designs/7c4aba1d73" # test6 = os.environ.get("test6") # headers = { # "Authorization": f"Bearer {test6}", # "Content-Type": "application/json" # } # payload = { # "format": "jpeg", # "metadata": "some text", # "params": [ # { # "name": "bubble", # "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/568b337221.png" # }, # { # "name": "quotes", # "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/779f8b9041.png" # }, # { # "name": "text", # "text": message # }, # { # "name": "avatar", # "imageUrl": "https://dynapictures.com/b/rest/public/media/0ceb636a01/images/2f7ddd7b55.jpg" # }, # { # "name": "name", # "text": "JohnAI" # }, # { # "name": "title", # "text": "Automated" # } # ] # } # response = requests.post(url, headers=headers, data=json.dumps(payload)) # response = response.json() # response = response["imageUrl"] # return response # iface = gr.Interface(fn=function2, inputs="text", outputs="text") # iface.launch()