# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import math
import os
import os.path as osp

import mmcv

from mmocr.utils import convert_annotations


def collect_files(img_dir, gt_dir):
    """Collect all images and their corresponding groundtruth files.

    Args:
        img_dir (str): The image directory
        gt_dir (str): The groundtruth directory

    Returns:
        files (list): The list of tuples (img_file, groundtruth_file)
    """
    assert isinstance(img_dir, str)
    assert img_dir
    assert isinstance(gt_dir, str)
    assert gt_dir

    ann_list, imgs_list = [], []
    for gt_file in os.listdir(gt_dir):
        ann_list.append(osp.join(gt_dir, gt_file))
        imgs_list.append(osp.join(img_dir, gt_file.replace('.json', '.png')))

    files = list(zip(sorted(imgs_list), sorted(ann_list)))
    assert len(files), f'No images found in {img_dir}'
    print(f'Loaded {len(files)} images from {img_dir}')

    return files


def collect_annotations(files, nproc=1):
    """Collect the annotation information.

    Args:
        files (list): The list of tuples (image_file, groundtruth_file)
        nproc (int): The number of process to collect annotations

    Returns:
        images (list): The list of image information dicts
    """
    assert isinstance(files, list)
    assert isinstance(nproc, int)

    if nproc > 1:
        images = mmcv.track_parallel_progress(
            load_img_info, files, nproc=nproc)
    else:
        images = mmcv.track_progress(load_img_info, files)

    return images


def load_img_info(files):
    """Load the information of one image.

    Args:
        files (tuple): The tuple of (img_file, groundtruth_file)

    Returns:
        img_info (dict): The dict of the img and annotation information
    """
    assert isinstance(files, tuple)

    img_file, gt_file = files
    assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
        '.')[0]
    # read imgs while ignoring orientations
    img = mmcv.imread(img_file, 'unchanged')

    img_info = dict(
        file_name=osp.join(osp.basename(img_file)),
        height=img.shape[0],
        width=img.shape[1],
        segm_file=osp.join(osp.basename(gt_file)))

    if osp.splitext(gt_file)[1] == '.json':
        img_info = load_json_info(gt_file, img_info)
    else:
        raise NotImplementedError

    return img_info


def load_json_info(gt_file, img_info):
    """Collect the annotation information.

    Args:
        gt_file (str): The path to ground-truth
        img_info (dict): The dict of the img and annotation information

    Returns:
        img_info (dict): The dict of the img and annotation information
    """

    annotation = mmcv.load(gt_file)
    anno_info = []
    for form in annotation['form']:
        for ann in form['words']:

            iscrowd = 1 if len(ann['text']) == 0 else 0

            x1, y1, x2, y2 = ann['box']
            x = max(0, min(math.floor(x1), math.floor(x2)))
            y = max(0, min(math.floor(y1), math.floor(y2)))
            w, h = math.ceil(abs(x2 - x1)), math.ceil(abs(y2 - y1))
            bbox = [x, y, w, h]
            segmentation = [x, y, x + w, y, x + w, y + h, x, y + h]

            anno = dict(
                iscrowd=iscrowd,
                category_id=1,
                bbox=bbox,
                area=w * h,
                segmentation=[segmentation])
            anno_info.append(anno)

    img_info.update(anno_info=anno_info)

    return img_info


def parse_args():
    parser = argparse.ArgumentParser(
        description='Generate training and test set of FUNSD ')
    parser.add_argument('root_path', help='Root dir path of FUNSD')
    parser.add_argument(
        '--nproc', default=1, type=int, help='number of process')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    root_path = args.root_path

    for split in ['training', 'test']:
        print(f'Processing {split} set...')
        with mmcv.Timer(print_tmpl='It takes {}s to convert FUNSD annotation'):
            files = collect_files(
                osp.join(root_path, 'imgs'),
                osp.join(root_path, 'annotations', split))
            image_infos = collect_annotations(files, nproc=args.nproc)
            convert_annotations(
                image_infos, osp.join(root_path,
                                      'instances_' + split + '.json'))


if __name__ == '__main__':
    main()