File size: 12,186 Bytes
c9019cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
#!/usr/bin/env python
# Copyright (c) 2022, National Diet Library, Japan
#
# This software is released under the CC BY 4.0.
# https://creativecommons.org/licenses/by/4.0/
from typing import List
from .utils import auto_run
from enum import IntEnum, auto
class Category(IntEnum):
LINE_MAIN = 0
LINE_INOTE = auto()
LINE_HNOTE = auto()
LINE_CAPTION = auto()
BLOCK_FIG = auto()
BLOCK_TABLE = auto()
BLOCK_PILLAR = auto()
BLOCK_FOLIO = auto()
BLOCK_RUBI = auto()
BLOCK_CHART = auto()
BLOCK_EQN = auto()
BLOCK_CFM = auto()
BLOCK_ENG = auto()
CHAR = auto()
NUM = auto()
# TYPE=“本文|割注|頭注|キャプション"
# TYPE=“図版|表組|柱|ノンブル|ルビ|組織図|数式|化学式|欧文|
categories = [
{'id': int(Category.LINE_MAIN), 'name': 'line_main', 'org_name': '本文'},
{'id': int(Category.LINE_INOTE), 'name': 'line_inote', 'org_name': '割注'},
{'id': int(Category.LINE_HNOTE), 'name': 'line_hnote', 'org_name': '頭注'},
{'id': int(Category.LINE_CAPTION), 'name': 'line_caption', 'org_name': 'キャプション'},
{'id': int(Category.BLOCK_FIG), 'name': 'block_fig', 'org_name': '図版'},
{'id': int(Category.BLOCK_TABLE), 'name': 'block_table', 'org_name': '表組'},
{'id': int(Category.BLOCK_PILLAR), 'name': 'block_pillar', 'org_name': '柱'},
{'id': int(Category.BLOCK_FOLIO), 'name': 'block_folio', 'org_name': 'ノンブル'},
{'id': int(Category.BLOCK_RUBI), 'name': 'block_rubi', 'org_name': 'ルビ'},
{'id': int(Category.BLOCK_CHART), 'name': 'block_chart', 'org_name': '組織図'},
{'id': int(Category.BLOCK_EQN), 'name': 'block_eqn', 'org_name': '数式'},
{'id': int(Category.BLOCK_CFM), 'name': 'block_cfm', 'org_name': '化学式'},
{'id': int(Category.BLOCK_ENG), 'name': 'block_eng', 'org_name': '欧文'},
{'id': int(Category.CHAR), 'name': 'char', 'org_name': 'char'},
{'id': int(Category.NUM), 'name': 'void', 'org_name': 'void'}]
categories_org_name_index = {elem['org_name']: elem for elem in categories}
categories_name_index = {elem['name']: elem for elem in categories}
def org_name_to_id(s: str):
return categories_org_name_index[s]['id']
def name_to_org_name(s: str):
return categories_name_index[s]['org_name']
class NDLObject:
def __init__(self, x, y, width, height, category_id=-1):
self.x, self.y = x, y
self.width, self.height = width, height
self.category_id = category_id
def __repr__(self):
return f'NDLObject({self.x}, {self.y}, {self.width}, {self.height}, category_id={self.category_id})'
class NDLBlock(NDLObject):
def __init__(self, type, *args, **kwargs):
super().__init__(*args, **kwargs)
self.category_id = org_name_to_id(type)
self.type = type
def __repr__(self):
return f'NDLBlock({self.type}, {self.x}, {self.y}, {self.width}, {self.height}, category_id={self.category_id})'
class NDLChar(NDLObject):
def __init__(self, moji: str, *args, **kwargs):
super().__init__(*args, **kwargs)
self.moji = moji
self.category_id = Category.CHAR
def __repr__(self):
return f'NDLChar(\'{self.moji}\', {self.x}, {self.y}, {self.width}, {self.height}, category_id={self.category_id})'
class NDLLine(NDLObject):
def __init__(self, chars: List[NDLChar], opt: str, *args, **kwargs):
super().__init__(*args, **kwargs)
self.chars = chars
self.category_id = org_name_to_id(opt)
self.opt = opt
def __repr__(self):
return f'NDLLine({self.chars}, {self.opt}, {self.x}, {self.y}, {self.width}, {self.height}, category_id={self.category_id})'
class NDLPage:
def __init__(self, img_path: str, objects: List[NDLObject], source_xml: str):
self.img_path = img_path
self.objects = objects
self.source_xml = source_xml
def __repr__(self):
return f'NDLPage({self.img_path}, {self.objects}, {self.source_xml})'
class NDLDataset:
def __init__(self, pages=None):
self.pages = [] if pages is None else pages
def parse(self, xml_path: str, img_dir: str):
import xml.etree.ElementTree as ET
from pathlib import Path
print(f'loading from {xml_path} ... ', end='')
tree = ET.parse(xml_path)
root = tree.getroot()
pages = []
def parse_bbox(elem):
return float(elem.attrib['X']), float(elem.attrib['Y']), float(elem.attrib['WIDTH']), float(elem.attrib['HEIGHT'])
for page in root:
img_path = str(Path(img_dir) / page.attrib['IMAGENAME'])
objects = []
for elem in page:
bbox = parse_bbox(elem)
prefix, has_namespace, postfix = elem.tag.partition('}')
if has_namespace:
tag = postfix
else:
tag = elem.tag
if tag == 'BLOCK':
objects.append(NDLBlock(elem.attrib['TYPE'], *bbox))
elif tag == 'LINE':
chars = []
for char in elem:
bbox_char = parse_bbox(char)
if char.get('MOJI') is None:
continue
chars.append(NDLChar(char.attrib['MOJI'], *bbox_char))
# Changed OPT to TYPE specification.
# objects.append(NDLLine(chars, elem.attrib.get('OPT', ''), *bbox))
objects.append(
NDLLine(chars, elem.attrib.get('TYPE', ''), *bbox))
else:
pass
pages.append(NDLPage(img_path, objects, Path(xml_path).stem))
print(f'done! {len(pages)} loaded')
self.pages.extend(pages)
def summary(self, output_dir: str = "./generated/"):
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
sizes = []
bbox_nums = []
opts = defaultdict(int)
types = defaultdict(int)
for page in self.pages:
cnt = 0
for obj in page.objects:
sizes.append(
np.array([obj.width, obj.height], dtype=np.float32))
if isinstance(obj, NDLBlock):
types[obj.type] += 1
cnt += 1
if isinstance(obj, NDLLine):
cnt += len(obj.chars)
opts[obj.opt] += 1
bbox_nums.append(cnt)
print(opts)
print(types)
sizes = np.array(sizes)
bbox_nums = np.array(bbox_nums)
def savefig(data, file_name):
plt.figure()
plt.hist(data)
plt.savefig(output_dir + file_name)
savefig(sizes[:, 0], "hist_width.png")
savefig(sizes[:, 1], "hist_height.png")
savefig(sizes[:, 1] / sizes[:, 0], "hist_aspect.png")
savefig(bbox_nums, "hist_bbox_num.png")
def to_coco_fmt(self, fx=1.0, fy=1.0, add_char: bool = True, add_block: bool = True, add_prefix: bool = False, suffix: str = ".jpg"):
import cv2
from pathlib import Path
from tqdm import tqdm
from collections import defaultdict
output = {'images': [], 'annotations': []}
image_id = 0
annotation_id = 0
instance_num = defaultdict(int)
print("start to_coco_fmt")
def make_bbox(obj):
x1, y1 = fx * obj.x, fy * obj.y
width, height = fx * obj.width, fy * obj.height
x2, y2 = x1 + width, y1 + height
bbox = [x1, y1, width, height]
area = width * height
contour = [x1, y1, x2, y1, x2, y2, x1, y2]
return bbox, contour, area
def add_annotation(obj):
bbox, contour, area = make_bbox(obj)
ann = {'image_id': image_id, 'id': annotation_id, 'bbox': bbox, 'area': area,
'iscrowd': 0, 'category_id': int(obj.category_id)}
ann['segmentation'] = [contour]
output['annotations'].append(ann)
def add_line_annotation(obj):
bbox, _, area_sum = make_bbox(obj)
area = 0
contours = []
for char in obj.chars:
_, contour, area_ = make_bbox(char)
area += area_
contours.append(contour)
if area == 0:
area = area_sum
ann = {'image_id': image_id, 'id': annotation_id, 'bbox': bbox, 'area': area,
'iscrowd': 0, 'category_id': int(obj.category_id)}
ann['segmentation'] = contours
output['annotations'].append(ann)
for page in tqdm(self.pages):
img = cv2.imread(page.img_path)
if img is None:
print(f"Cannot load {page.img_path}")
continue
prefix = page.source_xml + "_" if add_prefix else ""
file_name = prefix + str(Path(page.img_path).name)
if Path(file_name).suffix != suffix:
file_name = str(Path(file_name).with_suffix('.jpg'))
image = {'file_name': file_name,
'width': int(fx * img.shape[1]), 'height': int(fy * img.shape[0]), "id": image_id}
output['images'].append(image)
for obj in page.objects:
if add_block:
if isinstance(obj, NDLLine):
add_line_annotation(obj)
else:
add_annotation(obj)
instance_num[int(obj.category_id)] += 1
annotation_id += 1
image_id += 1
print(instance_num)
output['categories'] = categories
output['info'] = {
"description": "NDL",
"url": "",
"version": "0.1a",
"year": 2021,
"contributor": "morpho",
"date_created": "2021/09/01"
}
output['licenses'] = []
return output
def train_test_split(self, ratio: float = 0.9):
import random
from copy import deepcopy
print("start train_test_split")
pages = deepcopy(self.pages)
random.shuffle(pages)
split = int(ratio * len(pages))
return NDLDataset(pages[:split]), NDLDataset(pages[split:])
def json_to_file(data, output_path: str):
import json
with open(output_path, 'w') as f:
json.dump(data, f, indent=4)
def main(xml_paths: List[str] = None, xml_list_path: str = None,
img_dirs: List[str] = None, img_list_path: str = None,
show_summary: bool = False, fx: float = 1.0, fy: float = 1.0,
train_json_path: str = "generated/train.json", test_json_path: str = "generated/test.json",
add_prefix: bool = False):
if xml_list_path is not None:
xml_paths = list([s.strip() for s in open(xml_list_path).readlines()])
if xml_paths is None:
print('Please specify --xml_paths or --xml_list_path')
return -1
if img_list_path is not None:
img_dirs = list([s.strip() for s in open(img_list_path).readlines()])
if img_dirs is None:
print('Please specify --img_dirs or --img_list_path')
return -1
dataset = NDLDataset()
for xml_path, img_dir in zip(xml_paths, img_dirs):
dataset.parse(xml_path, img_dir)
if show_summary:
dataset.summary()
train_dataset, test_dataset = dataset.train_test_split()
train_json = train_dataset.to_coco_fmt(fx=fx, fy=fy, add_prefix=add_prefix)
json_to_file(train_json, train_json_path)
test_json = test_dataset.to_coco_fmt(fx=fx, fy=fy, add_prefix=add_prefix)
json_to_file(test_json, test_json_path)
# whole data annotation
import os
data_json_path = os.path.join(
os.path.dirname(train_json_path), 'data.json')
data_json = dataset.to_coco_fmt(fx=fx, fy=fy, add_prefix=add_prefix)
json_to_file(data_json, data_json_path)
if __name__ == '__main__':
auto_run(main)
|