|
""" |
|
This code is based on the following file: |
|
https://github.com/tztztztztz/eqlv2/blob/master/mmdet/datasets/builder.py |
|
""" |
|
import copy |
|
import platform |
|
import random |
|
from functools import partial |
|
|
|
import numpy as np |
|
from mmcv.parallel import collate |
|
from mmcv.runner import get_dist_info |
|
from mmcv.utils import Registry, build_from_cfg |
|
from torch.utils.data import DataLoader |
|
|
|
from .samplers import DistributedGroupSampler, DistributedSampler, GroupSampler |
|
|
|
if platform.system() != 'Windows': |
|
|
|
import resource |
|
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) |
|
hard_limit = rlimit[1] |
|
soft_limit = min(4096, hard_limit) |
|
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) |
|
|
|
DATASETS = Registry('dataset') |
|
PIPELINES = Registry('pipeline') |
|
|
|
|
|
def _concat_dataset(cfg, default_args=None): |
|
from .dataset_wrappers import ConcatDataset |
|
ann_files = cfg['ann_file'] |
|
img_prefixes = cfg.get('img_prefix', None) |
|
seg_prefixes = cfg.get('seg_prefix', None) |
|
proposal_files = cfg.get('proposal_file', None) |
|
|
|
datasets = [] |
|
num_dset = len(ann_files) |
|
for i in range(num_dset): |
|
data_cfg = copy.deepcopy(cfg) |
|
data_cfg['ann_file'] = ann_files[i] |
|
if isinstance(img_prefixes, (list, tuple)): |
|
data_cfg['img_prefix'] = img_prefixes[i] |
|
if isinstance(seg_prefixes, (list, tuple)): |
|
data_cfg['seg_prefix'] = seg_prefixes[i] |
|
if isinstance(proposal_files, (list, tuple)): |
|
data_cfg['proposal_file'] = proposal_files[i] |
|
datasets.append(build_dataset(data_cfg, default_args)) |
|
|
|
return ConcatDataset(datasets) |
|
|
|
|
|
def build_dataset(cfg, default_args=None): |
|
from .dataset_wrappers import (ConcatDataset, RepeatDataset, |
|
ClassBalancedDataset) |
|
from .class_balance_dataset_wrapper import CASDataset |
|
from .max_iter_dataset_wrapper import MaxIterationDataset |
|
if isinstance(cfg, (list, tuple)): |
|
dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) |
|
elif cfg['type'] == 'RepeatDataset': |
|
dataset = RepeatDataset( |
|
build_dataset(cfg['dataset'], default_args), cfg['times']) |
|
elif cfg['type'] == 'ClassBalancedDataset': |
|
dataset = ClassBalancedDataset( |
|
build_dataset(cfg['dataset'], default_args), cfg['oversample_thr'], cfg.get('repeat_mode', 'ceil')) |
|
elif cfg['type'] == 'CASDataset': |
|
dataset = CASDataset(build_dataset(cfg['dataset'], default_args), cfg['max_iter']) |
|
elif cfg['type'] == 'MaxIterationDataset': |
|
dataset = MaxIterationDataset(build_dataset(cfg['dataset'], default_args), cfg['max_iter']) |
|
elif isinstance(cfg.get('ann_file'), (list, tuple)): |
|
dataset = _concat_dataset(cfg, default_args) |
|
else: |
|
dataset = build_from_cfg(cfg, DATASETS, default_args) |
|
|
|
return dataset |
|
|
|
|
|
def build_dataloader(dataset, |
|
samples_per_gpu, |
|
workers_per_gpu, |
|
num_gpus=1, |
|
dist=True, |
|
shuffle=True, |
|
seed=None, |
|
**kwargs): |
|
"""Build PyTorch DataLoader. |
|
|
|
In distributed training, each GPU/process has a dataloader. |
|
In non-distributed training, there is only one dataloader for all GPUs. |
|
|
|
Args: |
|
dataset (Dataset): A PyTorch dataset. |
|
samples_per_gpu (int): Number of training samples on each GPU, i.e., |
|
batch size of each GPU. |
|
workers_per_gpu (int): How many subprocesses to use for data loading |
|
for each GPU. |
|
num_gpus (int): Number of GPUs. Only used in non-distributed training. |
|
dist (bool): Distributed training/test or not. Default: True. |
|
shuffle (bool): Whether to shuffle the data at every epoch. |
|
Default: True. |
|
kwargs: any keyword argument to be used to initialize DataLoader |
|
|
|
Returns: |
|
DataLoader: A PyTorch dataloader. |
|
""" |
|
rank, world_size = get_dist_info() |
|
if dist: |
|
|
|
|
|
if shuffle: |
|
sampler = DistributedGroupSampler(dataset, samples_per_gpu, |
|
world_size, rank) |
|
else: |
|
sampler = DistributedSampler( |
|
dataset, world_size, rank, shuffle=False) |
|
batch_size = samples_per_gpu |
|
num_workers = workers_per_gpu |
|
else: |
|
sampler = GroupSampler(dataset, samples_per_gpu) if shuffle else None |
|
batch_size = num_gpus * samples_per_gpu |
|
num_workers = num_gpus * workers_per_gpu |
|
|
|
init_fn = partial( |
|
worker_init_fn, num_workers=num_workers, rank=rank, |
|
seed=seed) if seed is not None else None |
|
|
|
data_loader = DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
sampler=sampler, |
|
num_workers=num_workers, |
|
collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), |
|
pin_memory=False, |
|
worker_init_fn=init_fn, |
|
**kwargs) |
|
|
|
return data_loader |
|
|
|
|
|
def worker_init_fn(worker_id, num_workers, rank, seed): |
|
|
|
|
|
worker_seed = num_workers * rank + worker_id + seed |
|
np.random.seed(worker_seed) |
|
random.seed(worker_seed) |
|
|