|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint as cp |
|
from mmcv.cnn import build_conv_layer, build_norm_layer |
|
from mmcv.runner import Sequential |
|
|
|
from ..builder import BACKBONES |
|
from .resnet import Bottleneck as _Bottleneck |
|
from .resnet import ResNet |
|
|
|
|
|
class Bottle2neck(_Bottleneck): |
|
expansion = 4 |
|
|
|
def __init__(self, |
|
inplanes, |
|
planes, |
|
scales=4, |
|
base_width=26, |
|
base_channels=64, |
|
stage_type='normal', |
|
**kwargs): |
|
"""Bottle2neck block for Res2Net. |
|
|
|
If style is "pytorch", the stride-two layer is the 3x3 conv layer, if |
|
it is "caffe", the stride-two layer is the first 1x1 conv layer. |
|
""" |
|
super(Bottle2neck, self).__init__(inplanes, planes, **kwargs) |
|
assert scales > 1, 'Res2Net degenerates to ResNet when scales = 1.' |
|
width = int(math.floor(self.planes * (base_width / base_channels))) |
|
|
|
self.norm1_name, norm1 = build_norm_layer( |
|
self.norm_cfg, width * scales, postfix=1) |
|
self.norm3_name, norm3 = build_norm_layer( |
|
self.norm_cfg, self.planes * self.expansion, postfix=3) |
|
|
|
self.conv1 = build_conv_layer( |
|
self.conv_cfg, |
|
self.inplanes, |
|
width * scales, |
|
kernel_size=1, |
|
stride=self.conv1_stride, |
|
bias=False) |
|
self.add_module(self.norm1_name, norm1) |
|
|
|
if stage_type == 'stage' and self.conv2_stride != 1: |
|
self.pool = nn.AvgPool2d( |
|
kernel_size=3, stride=self.conv2_stride, padding=1) |
|
convs = [] |
|
bns = [] |
|
|
|
fallback_on_stride = False |
|
if self.with_dcn: |
|
fallback_on_stride = self.dcn.pop('fallback_on_stride', False) |
|
if not self.with_dcn or fallback_on_stride: |
|
for i in range(scales - 1): |
|
convs.append( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
width, |
|
width, |
|
kernel_size=3, |
|
stride=self.conv2_stride, |
|
padding=self.dilation, |
|
dilation=self.dilation, |
|
bias=False)) |
|
bns.append( |
|
build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1]) |
|
self.convs = nn.ModuleList(convs) |
|
self.bns = nn.ModuleList(bns) |
|
else: |
|
assert self.conv_cfg is None, 'conv_cfg must be None for DCN' |
|
for i in range(scales - 1): |
|
convs.append( |
|
build_conv_layer( |
|
self.dcn, |
|
width, |
|
width, |
|
kernel_size=3, |
|
stride=self.conv2_stride, |
|
padding=self.dilation, |
|
dilation=self.dilation, |
|
bias=False)) |
|
bns.append( |
|
build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1]) |
|
self.convs = nn.ModuleList(convs) |
|
self.bns = nn.ModuleList(bns) |
|
|
|
self.conv3 = build_conv_layer( |
|
self.conv_cfg, |
|
width * scales, |
|
self.planes * self.expansion, |
|
kernel_size=1, |
|
bias=False) |
|
self.add_module(self.norm3_name, norm3) |
|
|
|
self.stage_type = stage_type |
|
self.scales = scales |
|
self.width = width |
|
delattr(self, 'conv2') |
|
delattr(self, self.norm2_name) |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
|
|
def _inner_forward(x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.norm1(out) |
|
out = self.relu(out) |
|
|
|
if self.with_plugins: |
|
out = self.forward_plugin(out, self.after_conv1_plugin_names) |
|
|
|
spx = torch.split(out, self.width, 1) |
|
sp = self.convs[0](spx[0].contiguous()) |
|
sp = self.relu(self.bns[0](sp)) |
|
out = sp |
|
for i in range(1, self.scales - 1): |
|
if self.stage_type == 'stage': |
|
sp = spx[i] |
|
else: |
|
sp = sp + spx[i] |
|
sp = self.convs[i](sp.contiguous()) |
|
sp = self.relu(self.bns[i](sp)) |
|
out = torch.cat((out, sp), 1) |
|
|
|
if self.stage_type == 'normal' or self.conv2_stride == 1: |
|
out = torch.cat((out, spx[self.scales - 1]), 1) |
|
elif self.stage_type == 'stage': |
|
out = torch.cat((out, self.pool(spx[self.scales - 1])), 1) |
|
|
|
if self.with_plugins: |
|
out = self.forward_plugin(out, self.after_conv2_plugin_names) |
|
|
|
out = self.conv3(out) |
|
out = self.norm3(out) |
|
|
|
if self.with_plugins: |
|
out = self.forward_plugin(out, self.after_conv3_plugin_names) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
|
|
return out |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Res2Layer(Sequential): |
|
"""Res2Layer to build Res2Net style backbone. |
|
|
|
Args: |
|
block (nn.Module): block used to build ResLayer. |
|
inplanes (int): inplanes of block. |
|
planes (int): planes of block. |
|
num_blocks (int): number of blocks. |
|
stride (int): stride of the first block. Default: 1 |
|
avg_down (bool): Use AvgPool instead of stride conv when |
|
downsampling in the bottle2neck. Default: False |
|
conv_cfg (dict): dictionary to construct and config conv layer. |
|
Default: None |
|
norm_cfg (dict): dictionary to construct and config norm layer. |
|
Default: dict(type='BN') |
|
scales (int): Scales used in Res2Net. Default: 4 |
|
base_width (int): Basic width of each scale. Default: 26 |
|
""" |
|
|
|
def __init__(self, |
|
block, |
|
inplanes, |
|
planes, |
|
num_blocks, |
|
stride=1, |
|
avg_down=True, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
scales=4, |
|
base_width=26, |
|
**kwargs): |
|
self.block = block |
|
|
|
downsample = None |
|
if stride != 1 or inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.AvgPool2d( |
|
kernel_size=stride, |
|
stride=stride, |
|
ceil_mode=True, |
|
count_include_pad=False), |
|
build_conv_layer( |
|
conv_cfg, |
|
inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=1, |
|
bias=False), |
|
build_norm_layer(norm_cfg, planes * block.expansion)[1], |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
inplanes=inplanes, |
|
planes=planes, |
|
stride=stride, |
|
downsample=downsample, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
scales=scales, |
|
base_width=base_width, |
|
stage_type='stage', |
|
**kwargs)) |
|
inplanes = planes * block.expansion |
|
for i in range(1, num_blocks): |
|
layers.append( |
|
block( |
|
inplanes=inplanes, |
|
planes=planes, |
|
stride=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
scales=scales, |
|
base_width=base_width, |
|
**kwargs)) |
|
super(Res2Layer, self).__init__(*layers) |
|
|
|
|
|
@BACKBONES.register_module() |
|
class Res2Net(ResNet): |
|
"""Res2Net backbone. |
|
|
|
Args: |
|
scales (int): Scales used in Res2Net. Default: 4 |
|
base_width (int): Basic width of each scale. Default: 26 |
|
depth (int): Depth of res2net, from {50, 101, 152}. |
|
in_channels (int): Number of input image channels. Default: 3. |
|
num_stages (int): Res2net stages. Default: 4. |
|
strides (Sequence[int]): Strides of the first block of each stage. |
|
dilations (Sequence[int]): Dilation of each stage. |
|
out_indices (Sequence[int]): Output from which stages. |
|
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two |
|
layer is the 3x3 conv layer, otherwise the stride-two layer is |
|
the first 1x1 conv layer. |
|
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv |
|
avg_down (bool): Use AvgPool instead of stride conv when |
|
downsampling in the bottle2neck. |
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). |
|
-1 means not freezing any parameters. |
|
norm_cfg (dict): Dictionary to construct and config norm layer. |
|
norm_eval (bool): Whether to set norm layers to eval mode, namely, |
|
freeze running stats (mean and var). Note: Effect on Batch Norm |
|
and its variants only. |
|
plugins (list[dict]): List of plugins for stages, each dict contains: |
|
|
|
- cfg (dict, required): Cfg dict to build plugin. |
|
- position (str, required): Position inside block to insert |
|
plugin, options are 'after_conv1', 'after_conv2', 'after_conv3'. |
|
- stages (tuple[bool], optional): Stages to apply plugin, length |
|
should be same as 'num_stages'. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. |
|
zero_init_residual (bool): Whether to use zero init for last norm layer |
|
in resblocks to let them behave as identity. |
|
pretrained (str, optional): model pretrained path. Default: None |
|
init_cfg (dict or list[dict], optional): Initialization config dict. |
|
Default: None |
|
|
|
Example: |
|
>>> from mmdet.models import Res2Net |
|
>>> import torch |
|
>>> self = Res2Net(depth=50, scales=4, base_width=26) |
|
>>> self.eval() |
|
>>> inputs = torch.rand(1, 3, 32, 32) |
|
>>> level_outputs = self.forward(inputs) |
|
>>> for level_out in level_outputs: |
|
... print(tuple(level_out.shape)) |
|
(1, 256, 8, 8) |
|
(1, 512, 4, 4) |
|
(1, 1024, 2, 2) |
|
(1, 2048, 1, 1) |
|
""" |
|
|
|
arch_settings = { |
|
50: (Bottle2neck, (3, 4, 6, 3)), |
|
101: (Bottle2neck, (3, 4, 23, 3)), |
|
152: (Bottle2neck, (3, 8, 36, 3)) |
|
} |
|
|
|
def __init__(self, |
|
scales=4, |
|
base_width=26, |
|
style='pytorch', |
|
deep_stem=True, |
|
avg_down=True, |
|
pretrained=None, |
|
init_cfg=None, |
|
**kwargs): |
|
self.scales = scales |
|
self.base_width = base_width |
|
super(Res2Net, self).__init__( |
|
style='pytorch', |
|
deep_stem=True, |
|
avg_down=True, |
|
pretrained=pretrained, |
|
init_cfg=init_cfg, |
|
**kwargs) |
|
|
|
def make_res_layer(self, **kwargs): |
|
return Res2Layer( |
|
scales=self.scales, |
|
base_width=self.base_width, |
|
base_channels=self.base_channels, |
|
**kwargs) |
|
|