|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ..builder import LOSSES |
|
|
|
|
|
def _expand_onehot_labels(labels, label_weights, label_channels): |
|
bin_labels = labels.new_full((labels.size(0), label_channels), 0) |
|
inds = torch.nonzero( |
|
(labels >= 0) & (labels < label_channels), as_tuple=False).squeeze() |
|
if inds.numel() > 0: |
|
bin_labels[inds, labels[inds]] = 1 |
|
bin_label_weights = label_weights.view(-1, 1).expand( |
|
label_weights.size(0), label_channels) |
|
return bin_labels, bin_label_weights |
|
|
|
|
|
|
|
@LOSSES.register_module() |
|
class GHMC(nn.Module): |
|
"""GHM Classification Loss. |
|
|
|
Details of the theorem can be viewed in the paper |
|
`Gradient Harmonized Single-stage Detector |
|
<https://arxiv.org/abs/1811.05181>`_. |
|
|
|
Args: |
|
bins (int): Number of the unit regions for distribution calculation. |
|
momentum (float): The parameter for moving average. |
|
use_sigmoid (bool): Can only be true for BCE based loss now. |
|
loss_weight (float): The weight of the total GHM-C loss. |
|
""" |
|
|
|
def __init__(self, bins=10, momentum=0, use_sigmoid=True, loss_weight=1.0): |
|
super(GHMC, self).__init__() |
|
self.bins = bins |
|
self.momentum = momentum |
|
edges = torch.arange(bins + 1).float() / bins |
|
self.register_buffer('edges', edges) |
|
self.edges[-1] += 1e-6 |
|
if momentum > 0: |
|
acc_sum = torch.zeros(bins) |
|
self.register_buffer('acc_sum', acc_sum) |
|
self.use_sigmoid = use_sigmoid |
|
if not self.use_sigmoid: |
|
raise NotImplementedError |
|
self.loss_weight = loss_weight |
|
|
|
def forward(self, pred, target, label_weight, *args, **kwargs): |
|
"""Calculate the GHM-C loss. |
|
|
|
Args: |
|
pred (float tensor of size [batch_num, class_num]): |
|
The direct prediction of classification fc layer. |
|
target (float tensor of size [batch_num, class_num]): |
|
Binary class target for each sample. |
|
label_weight (float tensor of size [batch_num, class_num]): |
|
the value is 1 if the sample is valid and 0 if ignored. |
|
Returns: |
|
The gradient harmonized loss. |
|
""" |
|
|
|
if pred.dim() != target.dim(): |
|
target, label_weight = _expand_onehot_labels( |
|
target, label_weight, pred.size(-1)) |
|
target, label_weight = target.float(), label_weight.float() |
|
edges = self.edges |
|
mmt = self.momentum |
|
weights = torch.zeros_like(pred) |
|
|
|
|
|
g = torch.abs(pred.sigmoid().detach() - target) |
|
|
|
valid = label_weight > 0 |
|
tot = max(valid.float().sum().item(), 1.0) |
|
n = 0 |
|
for i in range(self.bins): |
|
inds = (g >= edges[i]) & (g < edges[i + 1]) & valid |
|
num_in_bin = inds.sum().item() |
|
if num_in_bin > 0: |
|
if mmt > 0: |
|
self.acc_sum[i] = mmt * self.acc_sum[i] \ |
|
+ (1 - mmt) * num_in_bin |
|
weights[inds] = tot / self.acc_sum[i] |
|
else: |
|
weights[inds] = tot / num_in_bin |
|
n += 1 |
|
if n > 0: |
|
weights = weights / n |
|
|
|
loss = F.binary_cross_entropy_with_logits( |
|
pred, target, weights, reduction='sum') / tot |
|
return loss * self.loss_weight |
|
|
|
|
|
|
|
@LOSSES.register_module() |
|
class GHMR(nn.Module): |
|
"""GHM Regression Loss. |
|
|
|
Details of the theorem can be viewed in the paper |
|
`Gradient Harmonized Single-stage Detector |
|
<https://arxiv.org/abs/1811.05181>`_. |
|
|
|
Args: |
|
mu (float): The parameter for the Authentic Smooth L1 loss. |
|
bins (int): Number of the unit regions for distribution calculation. |
|
momentum (float): The parameter for moving average. |
|
loss_weight (float): The weight of the total GHM-R loss. |
|
""" |
|
|
|
def __init__(self, mu=0.02, bins=10, momentum=0, loss_weight=1.0): |
|
super(GHMR, self).__init__() |
|
self.mu = mu |
|
self.bins = bins |
|
edges = torch.arange(bins + 1).float() / bins |
|
self.register_buffer('edges', edges) |
|
self.edges[-1] = 1e3 |
|
self.momentum = momentum |
|
if momentum > 0: |
|
acc_sum = torch.zeros(bins) |
|
self.register_buffer('acc_sum', acc_sum) |
|
self.loss_weight = loss_weight |
|
|
|
|
|
def forward(self, pred, target, label_weight, avg_factor=None): |
|
"""Calculate the GHM-R loss. |
|
|
|
Args: |
|
pred (float tensor of size [batch_num, 4 (* class_num)]): |
|
The prediction of box regression layer. Channel number can be 4 |
|
or 4 * class_num depending on whether it is class-agnostic. |
|
target (float tensor of size [batch_num, 4 (* class_num)]): |
|
The target regression values with the same size of pred. |
|
label_weight (float tensor of size [batch_num, 4 (* class_num)]): |
|
The weight of each sample, 0 if ignored. |
|
Returns: |
|
The gradient harmonized loss. |
|
""" |
|
mu = self.mu |
|
edges = self.edges |
|
mmt = self.momentum |
|
|
|
|
|
diff = pred - target |
|
loss = torch.sqrt(diff * diff + mu * mu) - mu |
|
|
|
|
|
g = torch.abs(diff / torch.sqrt(mu * mu + diff * diff)).detach() |
|
weights = torch.zeros_like(g) |
|
|
|
valid = label_weight > 0 |
|
tot = max(label_weight.float().sum().item(), 1.0) |
|
n = 0 |
|
for i in range(self.bins): |
|
inds = (g >= edges[i]) & (g < edges[i + 1]) & valid |
|
num_in_bin = inds.sum().item() |
|
if num_in_bin > 0: |
|
n += 1 |
|
if mmt > 0: |
|
self.acc_sum[i] = mmt * self.acc_sum[i] \ |
|
+ (1 - mmt) * num_in_bin |
|
weights[inds] = tot / self.acc_sum[i] |
|
else: |
|
weights[inds] = tot / num_in_bin |
|
if n > 0: |
|
weights /= n |
|
|
|
loss = loss * weights |
|
loss = loss.sum() / tot |
|
return loss * self.loss_weight |
|
|