|
import math |
|
|
|
import mmcv |
|
import torch |
|
import torch.nn as nn |
|
|
|
from mmdet.core import bbox_overlaps |
|
from ..builder import LOSSES |
|
from .utils import weighted_loss |
|
|
|
|
|
@mmcv.jit(derivate=True, coderize=True) |
|
@weighted_loss |
|
def iou_loss(pred, target, linear=False, eps=1e-6): |
|
"""IoU loss. |
|
|
|
Computing the IoU loss between a set of predicted bboxes and target bboxes. |
|
The loss is calculated as negative log of IoU. |
|
|
|
Args: |
|
pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2), |
|
shape (n, 4). |
|
target (torch.Tensor): Corresponding gt bboxes, shape (n, 4). |
|
linear (bool, optional): If True, use linear scale of loss instead of |
|
log scale. Default: False. |
|
eps (float): Eps to avoid log(0). |
|
|
|
Return: |
|
torch.Tensor: Loss tensor. |
|
""" |
|
ious = bbox_overlaps(pred, target, is_aligned=True).clamp(min=eps) |
|
if linear: |
|
loss = 1 - ious |
|
else: |
|
loss = -ious.log() |
|
return loss |
|
|
|
|
|
@mmcv.jit(derivate=True, coderize=True) |
|
@weighted_loss |
|
def bounded_iou_loss(pred, target, beta=0.2, eps=1e-3): |
|
"""BIoULoss. |
|
|
|
This is an implementation of paper |
|
`Improving Object Localization with Fitness NMS and Bounded IoU Loss. |
|
<https://arxiv.org/abs/1711.00164>`_. |
|
|
|
Args: |
|
pred (torch.Tensor): Predicted bboxes. |
|
target (torch.Tensor): Target bboxes. |
|
beta (float): beta parameter in smoothl1. |
|
eps (float): eps to avoid NaN. |
|
""" |
|
pred_ctrx = (pred[:, 0] + pred[:, 2]) * 0.5 |
|
pred_ctry = (pred[:, 1] + pred[:, 3]) * 0.5 |
|
pred_w = pred[:, 2] - pred[:, 0] |
|
pred_h = pred[:, 3] - pred[:, 1] |
|
with torch.no_grad(): |
|
target_ctrx = (target[:, 0] + target[:, 2]) * 0.5 |
|
target_ctry = (target[:, 1] + target[:, 3]) * 0.5 |
|
target_w = target[:, 2] - target[:, 0] |
|
target_h = target[:, 3] - target[:, 1] |
|
|
|
dx = target_ctrx - pred_ctrx |
|
dy = target_ctry - pred_ctry |
|
|
|
loss_dx = 1 - torch.max( |
|
(target_w - 2 * dx.abs()) / |
|
(target_w + 2 * dx.abs() + eps), torch.zeros_like(dx)) |
|
loss_dy = 1 - torch.max( |
|
(target_h - 2 * dy.abs()) / |
|
(target_h + 2 * dy.abs() + eps), torch.zeros_like(dy)) |
|
loss_dw = 1 - torch.min(target_w / (pred_w + eps), pred_w / |
|
(target_w + eps)) |
|
loss_dh = 1 - torch.min(target_h / (pred_h + eps), pred_h / |
|
(target_h + eps)) |
|
loss_comb = torch.stack([loss_dx, loss_dy, loss_dw, loss_dh], |
|
dim=-1).view(loss_dx.size(0), -1) |
|
|
|
loss = torch.where(loss_comb < beta, 0.5 * loss_comb * loss_comb / beta, |
|
loss_comb - 0.5 * beta) |
|
return loss |
|
|
|
|
|
@mmcv.jit(derivate=True, coderize=True) |
|
@weighted_loss |
|
def giou_loss(pred, target, eps=1e-7): |
|
r"""`Generalized Intersection over Union: A Metric and A Loss for Bounding |
|
Box Regression <https://arxiv.org/abs/1902.09630>`_. |
|
|
|
Args: |
|
pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2), |
|
shape (n, 4). |
|
target (torch.Tensor): Corresponding gt bboxes, shape (n, 4). |
|
eps (float): Eps to avoid log(0). |
|
|
|
Return: |
|
Tensor: Loss tensor. |
|
""" |
|
gious = bbox_overlaps(pred, target, mode='giou', is_aligned=True, eps=eps) |
|
loss = 1 - gious |
|
return loss |
|
|
|
|
|
@mmcv.jit(derivate=True, coderize=True) |
|
@weighted_loss |
|
def diou_loss(pred, target, eps=1e-7): |
|
r"""`Implementation of Distance-IoU Loss: Faster and Better |
|
Learning for Bounding Box Regression, https://arxiv.org/abs/1911.08287`_. |
|
|
|
Code is modified from https://github.com/Zzh-tju/DIoU. |
|
|
|
Args: |
|
pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2), |
|
shape (n, 4). |
|
target (Tensor): Corresponding gt bboxes, shape (n, 4). |
|
eps (float): Eps to avoid log(0). |
|
Return: |
|
Tensor: Loss tensor. |
|
""" |
|
|
|
lt = torch.max(pred[:, :2], target[:, :2]) |
|
rb = torch.min(pred[:, 2:], target[:, 2:]) |
|
wh = (rb - lt).clamp(min=0) |
|
overlap = wh[:, 0] * wh[:, 1] |
|
|
|
|
|
ap = (pred[:, 2] - pred[:, 0]) * (pred[:, 3] - pred[:, 1]) |
|
ag = (target[:, 2] - target[:, 0]) * (target[:, 3] - target[:, 1]) |
|
union = ap + ag - overlap + eps |
|
|
|
|
|
ious = overlap / union |
|
|
|
|
|
enclose_x1y1 = torch.min(pred[:, :2], target[:, :2]) |
|
enclose_x2y2 = torch.max(pred[:, 2:], target[:, 2:]) |
|
enclose_wh = (enclose_x2y2 - enclose_x1y1).clamp(min=0) |
|
|
|
cw = enclose_wh[:, 0] |
|
ch = enclose_wh[:, 1] |
|
|
|
c2 = cw**2 + ch**2 + eps |
|
|
|
b1_x1, b1_y1 = pred[:, 0], pred[:, 1] |
|
b1_x2, b1_y2 = pred[:, 2], pred[:, 3] |
|
b2_x1, b2_y1 = target[:, 0], target[:, 1] |
|
b2_x2, b2_y2 = target[:, 2], target[:, 3] |
|
|
|
left = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2))**2 / 4 |
|
right = ((b2_y1 + b2_y2) - (b1_y1 + b1_y2))**2 / 4 |
|
rho2 = left + right |
|
|
|
|
|
dious = ious - rho2 / c2 |
|
loss = 1 - dious |
|
return loss |
|
|
|
|
|
@mmcv.jit(derivate=True, coderize=True) |
|
@weighted_loss |
|
def ciou_loss(pred, target, eps=1e-7): |
|
r"""`Implementation of paper `Enhancing Geometric Factors into |
|
Model Learning and Inference for Object Detection and Instance |
|
Segmentation <https://arxiv.org/abs/2005.03572>`_. |
|
|
|
Code is modified from https://github.com/Zzh-tju/CIoU. |
|
|
|
Args: |
|
pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2), |
|
shape (n, 4). |
|
target (Tensor): Corresponding gt bboxes, shape (n, 4). |
|
eps (float): Eps to avoid log(0). |
|
Return: |
|
Tensor: Loss tensor. |
|
""" |
|
|
|
lt = torch.max(pred[:, :2], target[:, :2]) |
|
rb = torch.min(pred[:, 2:], target[:, 2:]) |
|
wh = (rb - lt).clamp(min=0) |
|
overlap = wh[:, 0] * wh[:, 1] |
|
|
|
|
|
ap = (pred[:, 2] - pred[:, 0]) * (pred[:, 3] - pred[:, 1]) |
|
ag = (target[:, 2] - target[:, 0]) * (target[:, 3] - target[:, 1]) |
|
union = ap + ag - overlap + eps |
|
|
|
|
|
ious = overlap / union |
|
|
|
|
|
enclose_x1y1 = torch.min(pred[:, :2], target[:, :2]) |
|
enclose_x2y2 = torch.max(pred[:, 2:], target[:, 2:]) |
|
enclose_wh = (enclose_x2y2 - enclose_x1y1).clamp(min=0) |
|
|
|
cw = enclose_wh[:, 0] |
|
ch = enclose_wh[:, 1] |
|
|
|
c2 = cw**2 + ch**2 + eps |
|
|
|
b1_x1, b1_y1 = pred[:, 0], pred[:, 1] |
|
b1_x2, b1_y2 = pred[:, 2], pred[:, 3] |
|
b2_x1, b2_y1 = target[:, 0], target[:, 1] |
|
b2_x2, b2_y2 = target[:, 2], target[:, 3] |
|
|
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps |
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps |
|
|
|
left = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2))**2 / 4 |
|
right = ((b2_y1 + b2_y2) - (b1_y1 + b1_y2))**2 / 4 |
|
rho2 = left + right |
|
|
|
factor = 4 / math.pi**2 |
|
v = factor * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) |
|
|
|
|
|
cious = ious - (rho2 / c2 + v**2 / (1 - ious + v)) |
|
loss = 1 - cious |
|
return loss |
|
|
|
|
|
@LOSSES.register_module() |
|
class IoULoss(nn.Module): |
|
"""IoULoss. |
|
|
|
Computing the IoU loss between a set of predicted bboxes and target bboxes. |
|
|
|
Args: |
|
linear (bool): If True, use linear scale of loss instead of log scale. |
|
Default: False. |
|
eps (float): Eps to avoid log(0). |
|
reduction (str): Options are "none", "mean" and "sum". |
|
loss_weight (float): Weight of loss. |
|
""" |
|
|
|
def __init__(self, |
|
linear=False, |
|
eps=1e-6, |
|
reduction='mean', |
|
loss_weight=1.0): |
|
super(IoULoss, self).__init__() |
|
self.linear = linear |
|
self.eps = eps |
|
self.reduction = reduction |
|
self.loss_weight = loss_weight |
|
|
|
def forward(self, |
|
pred, |
|
target, |
|
weight=None, |
|
avg_factor=None, |
|
reduction_override=None, |
|
**kwargs): |
|
"""Forward function. |
|
|
|
Args: |
|
pred (torch.Tensor): The prediction. |
|
target (torch.Tensor): The learning target of the prediction. |
|
weight (torch.Tensor, optional): The weight of loss for each |
|
prediction. Defaults to None. |
|
avg_factor (int, optional): Average factor that is used to average |
|
the loss. Defaults to None. |
|
reduction_override (str, optional): The reduction method used to |
|
override the original reduction method of the loss. |
|
Defaults to None. Options are "none", "mean" and "sum". |
|
""" |
|
assert reduction_override in (None, 'none', 'mean', 'sum') |
|
reduction = ( |
|
reduction_override if reduction_override else self.reduction) |
|
if (weight is not None) and (not torch.any(weight > 0)) and ( |
|
reduction != 'none'): |
|
if pred.dim() == weight.dim() + 1: |
|
weight = weight.unsqueeze(1) |
|
return (pred * weight).sum() |
|
if weight is not None and weight.dim() > 1: |
|
|
|
|
|
|
|
assert weight.shape == pred.shape |
|
weight = weight.mean(-1) |
|
loss = self.loss_weight * iou_loss( |
|
pred, |
|
target, |
|
weight, |
|
linear=self.linear, |
|
eps=self.eps, |
|
reduction=reduction, |
|
avg_factor=avg_factor, |
|
**kwargs) |
|
return loss |
|
|
|
|
|
@LOSSES.register_module() |
|
class BoundedIoULoss(nn.Module): |
|
|
|
def __init__(self, beta=0.2, eps=1e-3, reduction='mean', loss_weight=1.0): |
|
super(BoundedIoULoss, self).__init__() |
|
self.beta = beta |
|
self.eps = eps |
|
self.reduction = reduction |
|
self.loss_weight = loss_weight |
|
|
|
def forward(self, |
|
pred, |
|
target, |
|
weight=None, |
|
avg_factor=None, |
|
reduction_override=None, |
|
**kwargs): |
|
if weight is not None and not torch.any(weight > 0): |
|
if pred.dim() == weight.dim() + 1: |
|
weight = weight.unsqueeze(1) |
|
return (pred * weight).sum() |
|
assert reduction_override in (None, 'none', 'mean', 'sum') |
|
reduction = ( |
|
reduction_override if reduction_override else self.reduction) |
|
loss = self.loss_weight * bounded_iou_loss( |
|
pred, |
|
target, |
|
weight, |
|
beta=self.beta, |
|
eps=self.eps, |
|
reduction=reduction, |
|
avg_factor=avg_factor, |
|
**kwargs) |
|
return loss |
|
|
|
|
|
@LOSSES.register_module() |
|
class GIoULoss(nn.Module): |
|
|
|
def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0): |
|
super(GIoULoss, self).__init__() |
|
self.eps = eps |
|
self.reduction = reduction |
|
self.loss_weight = loss_weight |
|
|
|
def forward(self, |
|
pred, |
|
target, |
|
weight=None, |
|
avg_factor=None, |
|
reduction_override=None, |
|
**kwargs): |
|
if weight is not None and not torch.any(weight > 0): |
|
if pred.dim() == weight.dim() + 1: |
|
weight = weight.unsqueeze(1) |
|
return (pred * weight).sum() |
|
assert reduction_override in (None, 'none', 'mean', 'sum') |
|
reduction = ( |
|
reduction_override if reduction_override else self.reduction) |
|
if weight is not None and weight.dim() > 1: |
|
|
|
|
|
|
|
assert weight.shape == pred.shape |
|
weight = weight.mean(-1) |
|
loss = self.loss_weight * giou_loss( |
|
pred, |
|
target, |
|
weight, |
|
eps=self.eps, |
|
reduction=reduction, |
|
avg_factor=avg_factor, |
|
**kwargs) |
|
return loss |
|
|
|
|
|
@LOSSES.register_module() |
|
class DIoULoss(nn.Module): |
|
|
|
def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0): |
|
super(DIoULoss, self).__init__() |
|
self.eps = eps |
|
self.reduction = reduction |
|
self.loss_weight = loss_weight |
|
|
|
def forward(self, |
|
pred, |
|
target, |
|
weight=None, |
|
avg_factor=None, |
|
reduction_override=None, |
|
**kwargs): |
|
if weight is not None and not torch.any(weight > 0): |
|
if pred.dim() == weight.dim() + 1: |
|
weight = weight.unsqueeze(1) |
|
return (pred * weight).sum() |
|
assert reduction_override in (None, 'none', 'mean', 'sum') |
|
reduction = ( |
|
reduction_override if reduction_override else self.reduction) |
|
if weight is not None and weight.dim() > 1: |
|
|
|
|
|
|
|
assert weight.shape == pred.shape |
|
weight = weight.mean(-1) |
|
loss = self.loss_weight * diou_loss( |
|
pred, |
|
target, |
|
weight, |
|
eps=self.eps, |
|
reduction=reduction, |
|
avg_factor=avg_factor, |
|
**kwargs) |
|
return loss |
|
|
|
|
|
@LOSSES.register_module() |
|
class CIoULoss(nn.Module): |
|
|
|
def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0): |
|
super(CIoULoss, self).__init__() |
|
self.eps = eps |
|
self.reduction = reduction |
|
self.loss_weight = loss_weight |
|
|
|
def forward(self, |
|
pred, |
|
target, |
|
weight=None, |
|
avg_factor=None, |
|
reduction_override=None, |
|
**kwargs): |
|
if weight is not None and not torch.any(weight > 0): |
|
if pred.dim() == weight.dim() + 1: |
|
weight = weight.unsqueeze(1) |
|
return (pred * weight).sum() |
|
assert reduction_override in (None, 'none', 'mean', 'sum') |
|
reduction = ( |
|
reduction_override if reduction_override else self.reduction) |
|
if weight is not None and weight.dim() > 1: |
|
|
|
|
|
|
|
assert weight.shape == pred.shape |
|
weight = weight.mean(-1) |
|
loss = self.loss_weight * ciou_loss( |
|
pred, |
|
target, |
|
weight, |
|
eps=self.eps, |
|
reduction=reduction, |
|
avg_factor=avg_factor, |
|
**kwargs) |
|
return loss |
|
|